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This theoretical study investigates spinning and standing modes in azimuthally sym-
metric annular combustion chambers. Both modes are observed in experiments and
simulations, and an existing model predicts that spinning modes are the only stable
state of the system (Noiray, Bothien & Schuermans, 2011, Comb. Theory Modelling
15(5) 585–606). We extend this model to take into account the effect that the acoustic
azimuthal velocity has on the flames, and propose a phenomenological model based on
experiments performed on transversely forced flames. This model contains a parameter,
δ, that quantifies the influence that the transversal excitation has on the fluctuating
heat release. For small values of δ, spinning modes are the only stable state of the
system, while for large values of δ, standing modes are the only stable state. There is
also an intermediate range of δ for which both spinning and standing modes are stable.

1 Introduction

Annular combustion chambers usually have a much longer circumference than their length and
width, so thermoacoustic oscillations tend to develop in the azimuthal direction. If they travel in
a clockwise or anticlockwise direction, with the pressure and velocity nodes travelling at the speed
of sound, they are called spinning modes. If the nodes are fixed in space and the wave modulates
its amplitude without travelling, they are called standing modes. Both types of mode are found in
large eddy simulations (LES), experiments, and real engines. See for example [1] for spinning, [2]
for standing, and [3] for both.

Schuermans et al. [4] study an annular combustor as a network of acoustic elements, using a
state space representation. Their linear stability analysis predicts that standing modes are linearly
unstable. In time, however, these develop into a spinning mode, which they show is the only stable
limit-cycle of the system. They show that this behaviour is also seen for a thermoacoustic model
containing a one-dimensional wave equation and a nonlinear saturating pressure-dependent heat
release. This model is similar to that which will be used in this paper.

Noiray et al. [5] consider the effect of a non-uniform heat-release in the azimuthal direction. If
the acoustic mode has azimuthal dependence of the form cos(nθ), they show that a non-uniform
perturbation of heat release of the form cos(2nθ) is particularly influential. The amplitude of this
non-uniformity is labelled C2n. For C2n = 0, their analysis predicts that only spinning modes are
stable. For larger values of C2n, a sum of standing and spinning modes can be stable. Above a
critical value of C2n, only standing modes are stable.



G. Ghirardo, M.P. Juniper

This does not explain, however, why stable standing modes are possible in rotationally symmetric
configurations with C2n = 0, as found by [2, 3]. One explanation could be that combustors create
broadband noise, which seems to cause the thermo-acoustic oscillations to switch between different
modes [3, 6]. [1, 7] discuss the effect of noise on the system presented in [5], for a symmetric
configuration (by setting C2n = 0). The only stable states of the system are the two spinning
modes. Noise can make the system jump between the two modes, however, and, when it does so,
the system passes through the vicinity of a standing mode. Unfortunately this does not explain
how, in [2] and in certain configurations of [3], the system has a statistical preference for standing
modes.

In summary, current thermoacoustic models cannot explain why standing modes in symmetric
annular chambers should be stable, despite experimental evidence that they sometimes are. In
this paper we extend the work done in [5], to include the influence of transversal flame excitation
and show that a phenomenological model that includes transverse excitation can exhibit stable
standing modes as well as stable spinning modes.

2 Setup

The momentum and pressure equation for the fluctuating velocity u′ and the fluctuating pressure
p′, assuming linear acoustics, negligible effects of viscosity and temperature gradients, and a zero1

Mach number flow, are:

ρ
∂u′

∂t
+∇p′ = 0 (1)

∂p′

∂t
+ γp∇ · u′ = ρ(γ − 1)q′ (2)

A thorough derivation of these equations can be found in [8]. Since we are interested in the
instabilities in the azimuthal direction θ, we write the equations in cylindrical coordinates and,
after a suitable nondimensionalization, we obtain

∂u

∂t
+
∂p

∂θ
=0 (3)

∂p

∂t
+
∂u

∂θ
=q − αp (4)

In these equations all quantities are nondimensional, u is the velocity in the θ direction, q is the
heat release, and α > 0 is a damping coefficient. Eqn.s (3) and (4) are equivalent to the wave
equation, with ∂q/∂t as a source term:

∂2p

∂t2
+ α

∂p

∂t
− ∂2p

∂θ2
=
∂q

∂t
(5)

This model has been the common starting point of [1, 5, 7], and is discussed as well in [4], and
more details on the derivation can be found there.

The heat release fluctuations, q, are often assumed to depend either on velocity, pressure, or
both, with the inclusion of one or more time delays. However, we start from the analysis of Noiray
et al. [5], where q is a function of p only:

q =f(p) (6)

f(p) =βp− κp3 (7)

The first term depicts linear growth governed by β for small fluctuating pressures. The second
term in (7) is a nonlinear cubic saturation, governed by a coefficient κ. For any given κ > 0, the

1the mean azimuthal velocity is induced only by the swirlers, and is usually negligible

2



G. Ghirardo, M.P. Juniper

study of eqn. (5) in terms of a new pressure variable p̃ ≡ p/√κ leads to a new problem independent
of κ. It follows that the coefficient κ induces simply a rescaling of the problem, and will be set to
1 in the following analysis.

The theory developed in [5] based on eqn. (6) does not predict stable standing modes for
symmetric configurations, which are observed in [2, 3]. The universal validity of (6) is then called
into question, particularly the strong assumptions of (6), which are (i) the absence of a time delay
in p and (ii) the independence of q on anything else except p.

Regarding the first point, q has been found to be reasonably in phase with p in a LES simulation
of a specific, symmetric rig [2]. In that rig, both standing and spinning modes are observed,
suggesting that standing modes are possible in the absence of a time delay. Since the aim of this
paper is to explain how standing modes are possible in symmetric systems, we do not consider a
time delay and assume that p and q are in phase, leaving this investigation for further research.
Some results based on linear stability, applied to an n− τ model, discussing the importance of the
time delay can be found in [9].

Regarding the second point, we can assume, in addition to the dependence of p, a dependence of
q on the azimuthal velocity u, which excites transversally the flames. This possibility is investigated
in this paper.

3 Model of transversal forcing

The effect of transverse excitation on swirling premixed flames is a current topic of research.
Hauser et al. [10] report that an asymmetric perturbation of higher OH intensity is generated
by the transversal velocity. This asymmetric region of stronger combustion spirals around the
injector at the forcing frequency. This asymmetry persists also in addition to longitudinal forcing,
suggesting that the two phenomena are superposable.

Phase averaged chemiluminescence images taken from above an annular combustor by Worth
et al. [3] allow us to study, in the presence of standing modes, how the flames interact at pressure
nodes and antinodes. At pressure antinodes there is no transverse velocity excitation. Circles of
positive/negative heat release are shed from the injector and propagate outwards. The fluctuating
heat release is found to be approximately symmetric around the injector: at every instant of
time, the phase of the perturbation is approximately axisymmetric. This is consistent with [11],
where the vorticity disturbance is symmetric around the injector at pressure antinodes. At velocity
antinodes the symmetry of the perturbation breaks: the heat release is found to be approximately
in anti-phase on the two sides of the flame, in the direction of the transverse velocity. In [11]
the same break of symmetry happens for vortical disturbances, which are asymmetric at velocity
antinodes. This means that the spatially averaged heat release fluctuation of an injector is smaller
at velocity antinodes. This happens because, in the averaging, the zones in anti-phase cancel out.

Based on this observation, we assume that the fluctuating heat release of an injector is smaller
if a transverse excitation is present, introducing a dependence on the velocity u:

q(p, u) =f(p)µ(u) (8)

In this expression, f is the same function introduced in (7), and all the previous considerations
apply to it. The function µ must be unity for zero transverse excitation, and smaller than 1 for
u 6= 0, in the range of velocities investigated:

0 ≤ µ(u) ≤ 1 ∧ u
∂µ

∂u
(u) ≤ 0 (9)

We study two possibilities for µ:

µ(u) =1− δ|u| Case A (10)

µ(u) =1− δu2 Case B (11)
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Figure 1: Instantaneous snapshots of two simulations, for α = 0.08, β = 0.10. Pressure and velocity
values are reported on the left scale, while µ(u(θ)) values are reported on the right scale.
a) µ from case A, δ = 1. The pressure and velocity waves travel either to the left (if in
antiphase, as in this case) or to the right (if in phase). δ is small, so the influence of the
transverse velocity forcing is small, and the spinning mode is stable. The curve µ(θ) also
travels left, following the two waves. b) µ from case B, δ = 12. The velocity and pressure
are standing waves, and their nodes are fixed in space; pressure nodes corresponds to
troughs of µ, and velocity nodes correspond to peaks of µ.

with δ a positive coefficient that expresses how strongly the transverse forcing influences the heat
release. Both models must respect eqn. (9) at every instant of time.

4 Numerical setup

We opt to study the system of eqn.s (3) and (4), and project them into Fourier space, obtaining a
system of ordinary differential equations. The generic nth complex Fourier mode is governed by:{

u̇n = −inpn
ṗn = −inun − αpn + qn

∀n = 1, 2, ..., Nf . (12)

Since q is a nonlinear function of u and p, at each timestep the two functions u(θ) and p(θ) are eval-
uated from the Fourier coefficients {un} and {pn}, and then q(θ) is calculated as f(p(θ))µ(u(θ)).
Finally the {qn} coefficients are evaluated as a Fourier transform of q(θ). The system (12) can
then be numerically integrated with a numerical scheme.

The damping of this problem has to be adjusted to avoid excessive growth of higher order
harmonics. Specifically, we consider only the dissipation due to the boundary layers, which scales
as the square root of the frequency [8, 12]. We take this into account fixing αn = α

√
n in (12).

Two examples of two simulations showing a spinning and a standing mode are reported in figure
1, truncating the number of Fourier modes to Nf = 161.

The two pictures do not imply that the two modes are stable, and only time marching for a
long time allows us to check this at this stage2. We present here both cases A and B only to show

2The two modes in the two cases will be proved to be stable later with rigour.
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what the two different µ functions defined in (10) and (11) look like. Both cases present spinning
modes for small values of δ and standing modes for large values of δ.

The existence of a standing mode at one value of δ and a spinning mode at another is a key
result of this paper. In the next sections we conduct a stability analysis of these modes to confirm
that they are indeed both stable limit cycles of the nonlinear governing equations.

5 Reduction to a system of coupled oscillators

In this section we carry out spatial averaging in the azimuthal direction, in the same way as [5].
When annular combustors are subject to azimuthal instabilities, there is usually only one strong
Fourier component, which corresponds to the nth lowest acoustic mode of the chamber. This is
apparent from the power spectral density (PSD) of the Fourier transform of pressure signals from
experiments (see for example [3]), and is also observed in the numerical solutions of (12). We
truncate the modal expansion and consider only the nth mode:

u(t, θ) = nη1(t) sin(nθ)− nη2(t) cos(nθ) (13)

p(t, θ) = η′1(t) cos(nθ) + η′2(t) sin(nθ) (14)

where the second expression was obtained substituting (13) into (3). We now apply spatial aver-
aging [8] to this system: we substitute (13) and (14) into (4), multiply the expression by 2 cos(nθ),
and then average over 2π in the azimuthal coordinate, obtaining (15):

η′′1 + αη′1 + n2η1 = F1 (15)

η′′2 + αη′2 + n2η2 = F2 (16)

Here, (16) has been obtained similarly by multiplying by 2 sin(nθ). Notice that these expressions
are exact, and the assumption that higher order modes are negligible is applied assuming that the
two source terms on the RHS depend only on the Fourier modes η1 and η2. These two terms are:

F1 =
1

π

∫ 2π

0

q
(
η′1 cos(nθ) + η′2 sin(nθ), nη1 sin(nθ)− nη2 cos(nθ)

)
cos(nθ)dθ (17)

F2 =
1

π

∫ 2π

0

q
(
η′1 cos(nθ) + η′2 sin(nθ), nη1 sin(nθ)− nη2 cos(nθ)

)
sin(nθ)dθ (18)

We can study the system in the new timescale t′ = nt, and obtain:

η′′1 + αη′1 + η1 = f1(η1, η2, η
′
1, η

′
2) (19)

η′′2 + αη′2 + η2 = f2(η1, η2, η
′
1, η

′
2) (20)

where we dropped for ease of notation the prime from t′, we substituted α 7−→ α/n, and the
expressions for fi are fi ≡ Fi/n

2. This is a system of coupled oscillators, which can be numeri-
cally integrated in time in a 4-dimensional phase space, as opposed to the phase space with Nf
dimensions introduced in (12).
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mode Amplitudes and phase Trajectory in the plane (η1, η2)
spinning θ = ±π/2 with A = B, circle
standing θ = 0 ∨ π with arbitrary A,B line with arbitrary inclination

Table 1: Characterization of spinning and standing modes

5.1 Amplitudes and phase representation

Instead of studying the system in terms of displacements, ηi, and velocities, η̇i, it is more useful
to study it in terms of amplitudes and phases,

η1(t) =A(t) cos(ωt+ ϕ1(t)) (21)

η̇1(t) =−A(t)ω sin(ωt+ ϕ1(t)) (22)

η2(t) =B(t) cos(ωt+ ϕ2(t)) (23)

η̇2(t) =−B(t)ω sin(ωt+ ϕ2(t)) (24)

In these expressions, ω = 1 + O(β), where 1 is the natural frequency of both oscillators. Eqn.s
(19) and (20) are symmetric in η1, η2. It is useful to introduce the phase difference between the
two oscillators, θ(t) ≡ ϕ1(t) − ϕ2(t). If θ settles to ±π/2 and A = B, then the substitution of
(22) and (24) into (14) shows that the pressure distribution corresponds to a spinning mode in
the counterclockwise/clockwise direction respectively:

p(t, θ) = −Aω sin(ωt+ ϕ1 ∓ nθ) (25)

This solution spins in the azimuthal direction as in Figure (1.a). On the other hand, if θ settles
to π or 0, there is a standing mode, for any value of A,B:

p(t, θ) = ω sin(ωt+ ϕ1)(−A cos(nθ)±B sin(nθ)) (26)

The pressure nodes can be found by studying the zeros of the θ-term in (26). They are fixed in
space, as shown in Figure (1.b). It is convenient to examine the two cases in the (η1, η2) plane as
a function of time. With reference to eqn.s (21-24), the two modes give rise to limit-cycles which
are either circles or lines. The situation is summarized in table 1. Figure 2 shows two simulations
of trajectories in the (η1, η2) plane for case B. The two cases have different values of δ, and lead to
either spinning or standing limit-cycles. The simulations have been started with nearly the same
initial condition for θ, and from two random values for A,B.

6 Stability of the coupled oscillator system

We first report some results from the linear analysis of the fixed point p(t, θ) = u(t, θ) = 0 of the
system (19,20). This fixed point is stable for β < α. A double Hopf bifurcation occurs at β = α,
where two complex eigenvalues cross the imaginary axis at the same time. Similarly, [9] perform
a linear stability analysis of an azimuthally symmetric chamber and find two linearly unstable
spinning modes with exactly the same growth rate. They conclude that, in perfectly symmetric
systems, the sum of the two identical spinning modes would lead to a stable standing mode. This
is not the case, however, as shown by the fact that, for δ = 0, and β > α, this system converges
to a stable spinning mode, in accordance with [4].

We proceed by analysing the case of the oscillating system, fixing α = 0.08 and β = 0.10, and
focusing on case A. Figure 2 shows that two different values of δ lead to two different limit cycles:
a spinning mode and a standing mode. We now study the system over a range of δ. To do this,
we numerically integrate the system until it converges to a limit cycle, and then track the limit
cycle as we vary δ using MatCont, a numerical continuation package [13]. Figure 3 shows the
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Figure 2: Temporal evolution to stable limit cycles, for two different values of δ. In both simula-
tions, α = 0.08, β = 0.10, and µ is from case B. The top plots show the trajectory of the
system in the (η1, η2) plane; The black dot is the initial position and the darkness of the
line is proportional to the simulation time t. In this plane, spinning modes are circles
around the origin, and standing modes are lines centred on the origin, at an arbitrary
angle that depends only on the initial conditions. In the left frames, the spinning mode
is stable. In the right frames, the standing mode is stable. The bottom plots show the
temporal evolution of the phase θ between the two oscillators. The values of θ can be
compared with those in table 1.

stability of the spinning and standing modes. For δ = 0, the spinning mode is stable, because
all its Floquet multipliers are smaller than 1 in Figure 3.a. At δc2 ≈ 1.027, the modulus of two
Floquet multipliers crosses 1, which corresponds to a subcritical3 Neimark-Sacker bifurcation at
which the spinning mode becomes unstable. The argument of these two Floquet multipliers, shown
in Figure 3.c, is small. Notice that, for δ > δc2, there is one multiplier with modulus smaller than
1 and two multipliers with modulus greater than 1. This means that the system is attracting
from an invariant manifold4 with dimension 1, and repelling to another invariant manifold with
dimension 2. This is consistent with figure 2.b, where the point is first attracted to the spinning
mode (circular line) before being repelled towards a standing mode (straight line).

For the standing mode, for every value of δ, two multipliers are exactly equal to 1. One of these
is due to the fact that the system is at a limit-cycle and any movement in the direction of the
limit cycle remains on the limit cycle (the spinning mode has one too, under the horizontal black
line in figure 3.a). The other is due to the fact that the nodes of the standing mode can rotate
arbitrarily around the annulus - i.e. the black line in figure 2.b can take any angle with the axes.

3based on the first Lyapunov exponent, which is positive
4for the purposes of this article, an invariant manifold can be thought of as a particular surface in the phase space

such that all points on it are either attracted to or repelled from the same limit-cycle or fixed point. Refer to [14]
for a rigorous definition.
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Figure 3: Stability of standing and spinning limit-cycles with respect to the transversal forcing
parameter δ. (a) Modulus of the Floquet multipliers of both modes. To each multiplier
corresponds an invariant manifold on which the system is attracted towards the limit-
cycle if the modulus is smaller than 1 (continuous lines) or repelled from the limit-cycle
if the modulus is larger than 1 (dashed lines). One limit-cycle is unstable if there is
at least one multiplier larger than 1. From (a), for small values of δ only the spinning
mode is stable, and for large values of δ only the standing mode is stable. The standing
limit cycle has two coincident multipliers equal to 1, while the spinning limit cycle has
only one multiplier equal to 1 (not visible, covered by the black line) and a couple of
complex conjugate multipliers (indicated with the arrow). From the zoom in (b), we
observe there is a range of δ where both modes are stable. (c) Argument of the Floquet
multipliers, which is needed to discuss the type of bifurcation at criticality. The two non-
zero arguments of the spinning mode belong to the complex conjugate pair presented in
(a).

A fold bifurcation occurs at δc1 = 0.949, making the mode stable for δ > δc1. Notice that, for
δ < δc1, there is one multiplier with modulus smaller than 1 and one multiplier larger than 1.
This means that the system is attracting from a 1-dimensional invariant manifold and repelling
from another 1-dimensional invariant manifold. This can be seen in Figure 2.a, where for a while
the solution lingers as a standing mode (straight line) before being repelled towards the spinning
mode (circle line).

The angular frequency of the limit cycles is not changed by the nonlinearities of the problem:
in the range of parameters investigated, the period of oscillations was found to be constant and
equal to 2π. In summary:

• for δ < δc1 ≈ 0.949 only the spinning mode is stable;

• for δ > δc2 ≈ 1.027 only the standing mode is stable;

• for δc1 < δ < δc2, the system is multistable, with both standing and spinning modes stable.
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Moreover, for δ < δc1 and δ > δc2 the unstable mode attracts the solution on a 1-dimensional
invariant manifold, before repelling it towards the stable mode.

We checked that these stability results, obtained for the system (19,20), apply also to the original
system (5) by performing numerical simulations of (12) for different values of δ. For each value
of δ, we started the simulation with both standing and spinning modes as initial conditions, and
evaluated their stability by time-marching. The same qualitative picture was found, with the two
critical values of δ confined in these intervals: 0.9 < δc1 < 1.0, and 1.1 < δc2 < 1.2, in good
agreement with the values just presented. This shows that the reduction to a system of coupled
oscillators by considering only the fundamental unstable harmonic, as presented in section 5, is a
powerful tool to study the stability of the original wave eqn. (5), at least at the moderate value of
β − α here investigated.

We do not report here the analysis for case B, because it presents the same overall behaviour
of case A.

7 Slow flow

In this section we apply the method of averaging to the system of coupled oscillators (19,20)
for case B. We will obtain a new system of differential equations in terms of the amplitudes of
oscillation A,B and of the phase difference θ, introduced from eqn. (21) onwards. This will reduce
the dimensions of the problem from 4 to 3, allowing us to visualize the complete dynamics of the
problem. The method of averaging [15] gives the following formulation of the slow flow:

A′ = α
2A− 〈s1f1〉

B′ = α
2B − 〈s2f2〉

ωθ′ = − 1
A 〈c1f1〉+ 1

B 〈c2f2〉
(27)

where si ≡ sin(ωt+ ϕi) and ci ≡ cos(ωt+ ϕi), and the averaging operator of a generic function h
is introduced as

〈h(η1, η̇1, η2, η̇2)〉 ≡ ω

2π

∫ t+ 2π
ω

t

h
(
A cos(ωt+ ϕ1),

−Aω sin(ωt+ ϕ1),

B cos(ωt+ ϕ2),

−Bω sin(ωt+ ϕ2)
)
dt, (28)

and we do not report here the full expressions of (27). Notice that, while in the definitions (21-24)
the amplitudes and the phases are functions of time, they are constants in the RHS of (28). We
fix ω = 1, consistently with the period being 2π as reported earlier.

We leave a full characterization of the stability of the system (27) as a function of α, β, δ, κ to
future research. We fix the values of κ = 1, α = 0.08, β = 0.1, and draw the phase space for δ = 3
(spinning mode) and for δ = 12 (standing mode). The amplitudes A,B are non-negative numbers,
and θ ∈ [0 , 2π]. Since the phase space is symmetric with respect to the planes θ = kπ/2 with
k = 0, 1, 2, we restrict the visualization to θ ∈ [π/2 , π]. The system is also symmetric with respect
to the plane defined by A = B.

Because of the difficulty of drawing a 3 dimensional phase space, we report the flow on a few
invariant manifolds. These completely describe the stability of the problem5. Figure 4 shows two
convenient slices of the same phase space for δ = 3. In the picture, every shaded surface is an
invariant manifold, and all invariant manifolds are reported, with the exception of the two planes
A = 0 and B = 0. In Figure 4, the spinning mode is stable, because δ < δc. We then fix δ = 12 > δc
and present the same slices of the phase space in Figure 5, in which the standing mode is stable.

5The flow perpendicular to an invariant manifold is zero
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Figure 4: Two views of the 3D phase space, in terms of the amplitudes A and B of the two modes
and of the phase θ between them. δ = 3 < δcrit. The line A = B = 0 corresponds to the
trivial solution with zero pressure and velocity in the whole domain. The three surfaces
are invariant manifolds and the direction of the local vector field, which is tangential
to them, is described by the arrows. The spinning mode is reported as a red dot, and
the standing mode as a blue arc. For this value of δ, the spinning mode is stable and
the standing mode is unstable. The phase space is symmetric with respect to the plane
θ = π, with the image of the red dot under symmetry indicating a spinning mode with
the opposite azimuthal direction.

In this representation, the addition of a non-zero asymmetry parameter, C2n, as proposed in [5],
shifts the red point of Figure 4 towards one of the A,B axes, maintaining it on the same plane
θ±π/2. Doing so, the system exhibits a superposition of standing and spinning modes. As discussed
in [5], above a certain threshold the red point hits and gets stuck on one of the A,B axes, becoming
a pure standing mode. The current analysis shows that, with the addition of transverse forcing
introduced in (8), with µ(u) from case B as defined in (11), the standing mode becomes stable in
a different way, without passing through a superposition of standing and spinning modes.

8 Conclusions

This study improves the current understanding of standing and spinning modes in symmetric
annular combustion chambers, which is the subject of current research [2–4, 7, 9]. The starting
point of this study is the model proposed in [5]: the fluctuating heat release q is assumed to grow
linearly and saturate nonlinearly as the pressure increases, as q = f(p) = β−κp3. In our analysis,
we add an extra dependence, which reflects experimental observations [3,10]: the fluctuating heat
release fluctuates axisymmetrically at velocity nodes (pressure antinodes), while it fluctuates from
side to side at velocity antinodes (pressure nodes). When integrated over a sector of the chamber,
the q fluctuations are larger in the first case. We then assume that q = f(p)µ(u), and we study
two ways in which q can depend on u. We consider a case A with µ(u) = 1 − δ|u|, and a case B
with µ(u) = 1− δu2.

For both cases, we find that: (i) for small δ, only spinning modes are stable; (ii) for intermediate
δ, both standing and spinning modes are stable, and the system is multistable; (iii) for large δ,
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Figure 5: Two views of the same 3D phase space with δ = 12 > δcrit. In comparison with figure 4,
there is now a change of direction of the arrows on the nonplanar surface. For this value
of δ the standing modes (blue arc) are now stable, and the spinning mode (red dot) is
unstable.

only standing modes are stable.
Another result is that, when the system has only one stable limit-cycle, the other unstable limit-

cycle is not a repellor: it attracts the solution on one invariant manifold, and repels it on another.
Figure 12 in [4] suggests that the same property applies also to their system. If this property
holds in industrial combustors, noise could randomly shift the point in the phase space also to
the attracting manifold of the unstable mode, and the system could linger for longer close to the
unstable mode before decaying to the stable one. We give an example of this transient behaviour
in figure 2, and we comment on it based on the stability results in section 6.

This work suggests that transversal forcing plays an important role in annular combustion
instabilities, and should be taken into account to accurately predict instabilities in annular con-
figurations. The experimental characterization of a single injector to longitudinal forcing seems to
not be sufficient to predict the final state of the combustor.
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