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Abstract The describing function is a powerful tool
for characterizing nonlinear dynamical systems in the
frequencydomain. In somecases, it is the only available
description of a nonlinear operator characterizing a cer-
tain subcomponent of the system. This paper presents a
methodology to provide a state-space realization of one
given describing function, in order to allow the study of
the system in the time domain as well. The realization
is based on Hammerstein models and Fourier–Bessel
series. It can be embedded in time domain simulations
of complex configurations with many nonlinear ele-
ments interacting, accurately describing the nonlinear
saturation of the system. The technique is applied to an
example application in the field of combustion instabil-
ity, featuring self-excited thermoacoustic oscillations.
We benchmark the performance of the tool compar-
ing the results with a frequency domain analysis of the
same system, obtaining good agreement between the
two formulations.
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1 Introduction

Combustion systems are subject to acoustic fluctua-
tions of pressure and velocity, called thermoacoustic
oscillations [1,2]. These arise from the interaction
between acoustic waves and the unsteady heat release
rate from the flame, which locally induces a gas expan-
sion. Often these systems are not globally stable and
can nonlinearly saturate to a dynamic attractor, which
in most cases is a time-periodic acoustic field.

An increasingly large number of experiments [3–7]
and numerical simulations [8–11] investigate the non-
linear response of the unsteady heat release rate to
sinusoidal acoustic forcing. The same can be done
for Helmholtz resonators [12–14], which are acoustic
damping devices. In particular, both elements (flame
and Helmholtz resonator) can be isolated to an open-
loop configuration and forced by a harmonic input
at a fixed frequency and amplitude: for the flame,
the input is an acoustic longitudinal velocity fluctua-
tion just upstream of the flame; for the resonator, the
input is an acoustic pressure fluctuation at the inter-
face between the neck of the resonator and the encas-
ing geometry. Both elements are assumed to be sta-
ble, time-invariant operators, so that the output sig-
nal has the same period of the input. The response is
measured in terms of the gain and as the phase differ-
ence between output and input. This is the sinusoidal-
input describing function [15] of the element, from
here onwards referred to simply as the describing
function.
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One can then study the element in a closed-loop con-
figuration, which in the case of thermoacoustics corre-
sponds to placing it in an enclosing geometry, which
feeds back the output of the element as the input (reflec-
tion of acoustic waves). If the system undergoes a Hopf
bifurcation, one can then track the stability of thewhole
system as a function of the amplitude of the limit cycle,
by applying harmonic balance truncated at the first har-
monic. The technique is succinctly described in [16]
andworks quitewell as long as the system acts as a low-
pass filter on the higher-order harmonics, commonly
known as the filtering hypothesis.

Difficulties arise if, for certain parameters, more
than one mode of self-sustained oscillation is possi-
ble, because the knowledge of the describing function
to multiple inputs is then required, as discussed for
thermoacoustic systems in [17,18].

A second difficulty regards the onset of a secondary
bifurcation, often of the Neimark–Sacker type, where
two distinct frequencies emerge, as found in experi-
ments by [19] and in numerical simulations [20]. This
can still be discussed within the describing function
framework [16,21], but is not considered in this article.

A third difficulty arises in the low-order mod-
elling of thermoacoustic oscillations in annular com-
bustors, where the geometric discrete rotational sym-
metry makes the system’s linearized dynamics degen-
erate: a two-dimensional eigenspace becomes linearly
unstable at a double-Hopf bifurcation,1 i.e. two com-
plex conjugate pairs of eigenvalues sharing the same
frequency and growth rate cross the imaginary axis at
the same time. To tackle this third difficulty, a state-
space formulation of the problem is proposed for annu-
lar geometries by [22]. One can then study the dynam-
ical system, either with time-integration, numerical-
continuation, or analyticallywith themethod of averag-
ing [23] or of multiple scales [24]. Themajor drawback
of these state-space investigations (see also [25–27]) is
that the description of the flame response in state-space
has so far been phenomenological and not quantitative.

Section 2 of this paper presents a quantitative state-
space realization of one given describing function, so
that it can be used in time domain models of thermoa-
coustic systems. This modelling tool can improve the
industrial design process, by predicting the nonlinear
frequency shift of a mode when compared to a linear

1 Many annular combustors are also slightly non-axisymmetric,
perturbing this double-Hopf bifurcation.

analysis and correctly modelling the softening [14] of
Helmholtz resonators in the nonlinear regime.

Note that the focus here is not on system identifica-
tion, because the system is fully described in the fre-
quency domain,2 and time domain input/output data are
often not available. Reference [28] describes qualita-
tively the inversion of a describing function, for the pur-
pose of controlling a nonlinear system. Reference [29]
describes an iterative, numerical algorithm to calculate
a nonlinear saturation function for a given real-valued
describing function.Wepropose here instead aFourier–
Bessel series decomposition, which allows the calcu-
lation of a good fit without requiring iterations. This is
based on the analytic evaluation of the describing func-
tion of a Fourier–Bessel term, discussed in “Appen-
dix”. This procedure is of general applicability and has
good convergence properties in all cases studied (see
for example Fig. 5). The nonlinear saturation is then
used as part of a modified Hammerstein model [30],
pictured in Fig. 2b. This allows us to model the depen-
dence of the phase response on the input amplitude, so
that also a complex-valued describing function can be
fitted. Section 2 discusses how to fit accurately first the
linear part of the model and then the nonlinear part.

To show the applicability of this nonlinear state-
space realization, we study in Sect. 3 an example prob-
lem modelling a self-excited thermoacoustic experi-
ment [7], which depends on a geometric parameter L of
the configuration (the length of the combustion cham-
ber).We then study the system parametrically in L with
two methods.

The first method consists of a first-order harmonic
balance method, often described in thermoacoustics as
the flame describing function framework [4]. It predicts
the amplitudes and the frequencies of the limit cycles
as function of L , as presented in Fig. 9.

The second method is the time domain realization
of the system, using the state-space realization of the
describing function described in Sect. 2. We run time
domain simulations of the problem and extract the
amplitude and the frequency of the dominant harmonic
of the signal. One example of simulation is presented
in Fig. 11.

We then compare the results of the two methods
in Sect. 3.3, obtaining a good match, and discuss the
accuracy of the time domain model.

2 To be precise the response is defined at discrete values of fre-
quency and amplitude and then interpolated in between.
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Fig. 1 Smoothed, interpolated experimental data. The black dots
are individual experiments, carried out at a fixed frequency (hor-
izontal axis, in Hz) and forcing velocity amplitude (vertical axis,
normalized with respect to the mean upstream velocity). The red
dashed line is the curve below which the interpolation is valid,

because above it no experimental data are available. At velocity
amplitudes below the minimum tested velocity, the correspond-
ing value was used (at the bottom of both plots). aGain response.
b Phase response. (Color figure online)

We finally discuss the applications of this method-
ology and possible improvements in Sect. 4.

2 The state-space realization

The describing function represents the response of a
nonlinear operatorQ[u(t)] to a sinusoidal input u(t) =
A cos(ωt). In our application, u is the fluctuating veloc-
itymeasured upstream of the flame, just downstream of
the burner, with amplitude A and forcing frequency ω,
and the quantityQdescribes the fluctuating heat release
rate measured at the flame. This section is, however,
general, and applies to a generic single-input single-
output (SISO) system. The describing function of the
operator Q is defined [15] as

Q(A, ω) = 1

A

1

π/ω

∫ 2π/ω

0
Q [A cos(ωt)]

× (cos(ωt) + i sin(ωt)) dt (1)

As a matter of nomenclature, we will use capital let-
ters to indicate the describing or transfer function of

an operator, such as Q(A, ω), and we will use cap-
ital calligraphic letters to describe the corresponding
time domain operator, such as Q[u(t)]. The quantity
Q(A, ω) is a complex number, with its real and imagi-
nary parts expressing the amplitudes of the components
ofQ, respectively, in phase and in quadrature with the
sinusoidal input. One can then define the gainG and the
phase ϕ of the flame response as the polar coordinates
of the complex number Q(A, ω):

Q(A, ω) = G(A, ω)eiϕ(A,ω), G, ϕ : R+ × R
+ �→ R

(2){
G(A, ω) = |Q(A, ω)|
ϕ(A, ω) = arg[Q(A, ω)] (3)

We assume that the function Q(A, ω) is provided
over the rangeof frequencies and amplitudes of interest,
fromdata coming from experiments, numerical simula-
tions or analyticalmodels. To provide an example of the
application of this technique, we apply it to an experi-
ment carried out by [7,31]. The describing function of
the heat release rate response is shown in Fig. 1. It has
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Q−

Q+
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−ϕd
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Fig. 2 a Representation of the input and output phasors of the
nonlinear operator in the complex plane at the design frequency
ωd at one instant in time. The three black, grey and light grey
arrows in the top-left quadrant represent three input phasors with
increasing amplitude. These phasors rotate around the origin in
time, with direction eiωdt . The output phasors are represented
with the three grayscale thick arrows in the top-right quadrant.
The gain and the phase of the output depend on the input ampli-
tude, e.g. the three thick phasors in the top-right quadrant are not
parallel. The mean phase response ϕd of the outputs subtends the

arc. The two nonlinear operators Q± are designed so that their
phase response is ±π/4 the mean phase response ϕd. The two
dashed black arrows are the directions of the two operators. The
output phasor is then calculated as the sum of its projections onto
the two operators. The projections at the 3 amplitudes are the red,
orange and yellow arrows. b Block diagram of the model. The
internal structure of each of the operators Q± is a Hammerstein
model, discussed in Sect. 2.1. a Phasor space representation. b
Flow chart representation. (Color figure online)

been gently smoothed from experimental data using B-
splines [32]. In addition, the phase is unwrapped by 2π
to present a continuous functionϕ(A, ω) in the domain.

Wewant to provide a state-spacemodel that is equiv-
alent to the given describing function. Notice that the
describing function provides information on how the
system behaves if only one fundamental harmonic is
present. In the same way, the state-space model will
be accurate as long as the system presents a strong
fundamental harmonic. This restricts the applicability
to the describing function framework and will accu-
rately describe the state of the system if, after the Hopf
bifurcation, secondary bifurcations do not occur. The
model will be tuned at a design frequency ωd, at which
it will be most accurate. For example, one can choose
as design frequency the frequency of the least stable
mode of the whole system, obtained from a linear sta-
bility analysis. One can then run the time simulation,
and let the system evolve to a saturated limit cycle,
with a nonlinear saturated frequency ωd,1 = ωd +�ω.
If �ω is large, one can tune the flame model to the fre-
quency ωd,1 and either run a second time simulation or
continue from the first limit cycle.

Figure 2 shows a sketch in the complex plane of the
input and output phasors3 of the describing function,

3 A phasor is a representation of a sinusoidal function with a
certain amplitude, frequency and phase in the complex plane.

at a fixed design frequency ωd. The sinusoidal inputs
Aeiωdt rotate in time in the anticlockwise direction, for
three different amplitudes A, in the top-left quadrant
(the other features of the figure are discussed in the
next section). The input is operated on by Q, and the
subsequent output is shown in the top-right quadrant.
Since Q is a fully nonlinear operator, the phase and
the gain responses depend on the amplitude A, and the
three output phasors are not parallel, nor is the ratio of
their moduli with the respective input moduli constant.

In Sects. 2.1 and 2.2, we choose the structure of the
state-space realization. The following Sects. 2.3 and
2.4 carry out the fitting of, respectively, the linear and
nonlinear elements that define the realization. Section
2.5 briefly summarizes this section.

2.1 Operator splitting

Wedecompose the heat release rate response as the sum
of two nonlinear operators, as represented in Fig. 2b

Q[u(t)] = Q−[u(t)] + Q+[u(t)] (4){
Q−(A, ω) = G−(A, ω)eiϕ−(A,ωd)

Q+(A, ω) = G+(A, ω)eiϕ+(A,ωd)
(5)

The reasoning behind this choice is that the two oper-
ators Q− and Q+ will be designed to have a con-
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stant phase response with amplitude. This feature will
allow us to model each of them as a Hammerstein
block in Sect. 2.2. The frequency ωd in (5) is the fre-
quency at which the time domain realization will be
most accurate. We design the two operators to have
phase responses that differ by π/2, as can be observed
in Fig. 2a where their phase responses (dashed black
arrows) are orthogonal. Their phase response is defined
as:

{
ϕ−(A, ω)≡ ϕ(A, ω) − ϕ(A, ωd) + ϕd − π/4

ϕ+(A, ω)≡ ϕ(A, ω) − ϕ(A, ωd) + ϕd + π/4
(6)

From the definition (6), the output signals of the 2 oper-
ators are always in quadrature, and they are defined so
that at the design frequency ωd they present the phases

ϕ−(A, ωd) = ϕd − π/4 (7a)

ϕ+(A, ωd) = ϕd + π/4 (7b)

The design phase ϕd is the green (negative) angle
between the input (vectors in the top-left quadrant) and
the dashed line in the top-right quadrant in Fig. 2. The
value of ϕd is quite arbitrary, though in most cases it is
chosen as the mean phase response with amplitude of
the operator Q at the design frequency ωd; secondary
considerations on the limitations of this choice are dis-
cussed at the end of Sect. 2.3. The two operators have
then a phase response that is shifted by ±π/4 with
respect to that dashed line, as defined in (6). Once ϕd
is fixed, the phase response of the two operators is also
fixed by (6), and the two gains G∓(A, ω) can be calcu-
lated from (4). In other words, the original operator Q
is rewritten as the sum of its two projections on these
two directions. The projections are shown in Fig. 2with
red, orange, yellow colours.

2.2 Nonlinear saturation

This subsection applies in the same way to each of the
operatorsQ− andQ+. For ease of notation, we drop the
subscript± here.We express each of the operatorsQ as
the composition of a linear operator L and a nonlinear
operatorN , as presented in Fig. 2b.We choose as linear
operator the linearization of Q:

L(ω) ≡ Q(0, ω) (8)

In (8), L is a transfer function, since it does not depend
on the amplitude by definition. The composition of L
and N can happen in two ways [33]:

Wiener model Q = N
[
L[

u(t)
]]

(9a)

Hammerstein model Q = L
[
N [

u(t)
]]

(9b)

We now briefly discuss which model is best suited for
the problem at hand. The two options lead to a different
expression for the describing function N :

Wiener NNL(A, ω) = Q
( A

|Q(0, ω)| , ω
)
/Q(0, ω)

Hammerstein NLN (A, ω) = Q(A, ω)/Q(0, ω)

We present in Fig. 3 the gains of NNL and NLN applied
to the full operator Q introduced in (1) (the same
considerations apply when considering Q− and Q+).
Because of (8), the gains are unity at zero amplitude
A, as discussed in [30]. Each curve represents the non-
linear saturation with the amplitude A of the input at a
fixed frequency, with the colour of the line indicating
the frequency value. We observe that in the case 3b the
nonlinear saturation curves have aweak dependence on
the frequency and tend to overlap better, especially at
large amplitudes. This happens because the dominant
factor of the nonlinear saturation is the amplitude of
forcing and not the amplitude of the linear response.
This is a feature of forced flames, where one leading
nondimensional number governing the saturation is the
ratio A/U , withU the bulk velocity at the burner inlet.

We must also take into account that the nonlinear
operatorN produces, as output, spurious odd harmon-
ics of the input frequency. These harmonics do not hold
any meaning and can be filtered out with the struc-
ture (9b) if L behaves like a low-pass filter outside the
range of frequencies studied. This is a feature of flames
[34] and a necessity for the model to work, as we want
to comply with the hypothesis of strong attenuation
of higher harmonics that characterizes the describing
function framework.We therefore opt for the Hammer-
stein model described by (9b).

We now exploit the weak dependence of the gain
of N on the frequency and choose for N a static, i.e.
memoryless, nonlinearity. By operating in this way, the
linear operatorL depends only on the frequency and the
nonlinear operator N depends only on the amplitude:

Q = L
[
N [

u(t)
]]

Q(A, ω) = N (A)L(ω)

(10)
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Fig. 3 Slices of the nonlinear gain G(A, ω) at 100 frequencies,
equispaced from 96 to 194Hz. Each line corresponds to a differ-
ent frequency, associated with a different colour on the colour
bar on the right. In a, the gain of the operatorN is applied after
the operator L as in (9a), and this results in larger amplitudes A.
In b, the operator N is applied before the operator L as in (9b).

Two main behaviours are found around two distinct frequen-
cies, corresponding to the two hills in the describing function of
Fig. 1 around 100Hz and around 190Hz. The saturation curves
are closer in (b). a Nonlin. sat. of the Wiener model. b Nonlin.
sat. of the Hammerstein model. (Color figure online)

In the frequency domain, we are then approximating

Q(A, ω) ≈ N−(A)L−(ω) + N+(A)L+(ω) (11)

and we will make this approximation accurate at the
design frequency ωd. Section 2.3 discusses how to cal-
culate the linear operators L±, and Sect. 2.4 discusses
how to calculate the nonlinear operators N±.

2.3 Linear operator fitting

We want to calculate a fit for the linear operator L,
whose frequency response along the imaginary axis
s = iω is defined by Eq. (8). We choose to fit this
curve with rational function approximations, as dis-
cussed by [35,36]. In particular, the transfer function
of the operator is fitted to

Lfit(s) =
N∑

n=1

cn
s − an

+ d, s = σ + iω (12)

where {cn, an} and d are the coefficients of the fit,
which were calculated using the package VFIT3 writ-
ten by [36]. This is quite an established technique,
used for example in [37] to run time domain simu-
lation of a linear system, and in [38] to identify and
simulate components of acoustic and thermoacoustic
systems. In this case, we enforce the stability of the lin-

ear operator, but do not enforce a passivity constraint
[39].

The tool VFIT3 also calculates the matrices A, B,

C, D that describe the state-space realization of (12):

ẋ =Ax + Bu (13a)

y =Cx + Du (13b)

where x is a vector variable describing the internal state,
and u and y are, respectively, the scalar input and output
of the linear operator.

An important parameter of the fitting is the number
N of poles in (12). A large number N usually leads to
smaller errors within the range of frequencies [ω1, ω2]
at which data are available. On the other hand, a large
N usually results in a fit with many poles an outside
the range [ω1, ω2]. These in turn lead to large, unphys-
ical gains outside of the range of frequencies [ω1, ω2]
studied, violating our requirement of a low-pass fil-
ter behaviour at the higher frequencies. This is often
referred to as overfitting [40], and if overlooked can
lead to strongly oscillating time domain simulations at
very high frequencies.

Because of these considerations and after some test-
ing, we choose a number of N = 8 poles to do the
fitting. We observe that we need: (1) a low-pass filter
behaviour at the frequencies of the higher-order har-
monics, i.e. at (2k + 1)ωd , k ∈ N>0, as discussed in
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Fig. 4 Fitting at fd = 120Hz of the linear operatorL−. The gain is decreased outside the range [0.8ωd, 1.2ωd]. The fit is then weighted
higher in the range [0.9ωd, 1.1ωd], where the fit is more accurate. a Gain response. b Phase response

Sect. 2.2; (2) an accurate fit only in the vicinity of the
design frequency ωd;

To satisfy the first constraint, we extend the fit to a
broader range of frequencies, from 30 to 776Hz.More-
over, outside the range [0.8ωd, 1.2ωd], we make the
gain decrease towards zero. This guarantees that the fit
will be well behaved outside the range of frequencies
of interest, i.e. it will not exhibit unexpected large gains
due to overfitting.

To satisfy the second constraint, we provide to the
fitting toolVFIT3 a vector ofweights, whichwe choose
larger in the range [0.9ωd, 1.1ωd] to improve the accu-
racy in a neighbourhood of ωd.

We present an example of the fitting in Fig. 4, where
the original response L, the decreased response Ldec

and the fitted operator Lfit are reported. Notice that
the fit is accurate only in the vicinity of the design
frequency fd.

The two linear operators L± are fitted to the lin-
earization (8) of Q±, which are defined in (5). Since
this is a fitting algorithm, the fitted operators Lfit± are
affected by error, and Eq. (8) holds only in an approxi-
mate sense. In particular, also the phase responses ϕfit±
are not exactly in quadrature, with Eq. (7) valid only
in an approximate sense. We can, however, take this
into account and calculate the nonlinear saturations
N± as the projections of the original operator Q on
these slightly non-orthonormal operators, as discussed
in Sect. 2.4.

2.3.1 The design phase

This paragraph discusses a technicality regarding the
choice of the design phaseϕd.Weobserve that the value
of L±(ωd) depends both on the linear gain G(0, ω)

and on the phase response ϕd of Q±. A geometric
interpretation is immediate in Fig. 2. For example, if
the linear response (black vector, top-right quadrant)
is very close to the direction of Q−, then its projec-
tion on Q+ will be small, and the gain of L+ will be
small as well from (8). This situation can lead to a very
small linear gain and a very steep nonlinear response;
in the worst case, if L+(ω) = 0, the model would
be flawed, as the nonlinear response N [L[u]] would
be zero not just in the linear regime but at all ampli-
tudes. We can avoid these situations by choosing an
appropriate value for ϕd. Among the many possibili-
ties, we choose to first calculate the design phase as
ϕd = ϕ(ωd, A), averaged over the possible forcing
amplitudes A at the design frequency. Geometrically,
it represents the orientation of the dashed line that best
represents the average orientation of the output vectors
in the top-right quadrant of Fig. 2. If such a line is then
too close to the direction of one of the operators Q±,
i.e. if |ϕd ± π/4 − ϕ(ωd, 0)| < π/8, we suitably add
or subtract to it an angle π/8.

2.4 Nonlinear operator fitting

Wefitted in the previous section the linear operatorsLfit±
of the twoHammersteinmodels Q±. In this section, we
fit the nonlinear operatorsN±, which are defined in the
frequency domain by the approximation (11). We now
treat it as an equality at the design frequency ωd:

Q(A, ωd) = N−(A)Lfit−(ωd) + N+(A)Lfit+(ωd) (14)

Both sides of (14) are complex valued, and Lfit+(ωd)

and Lfit−(ωd) are linearly independent phasors.4 We then

4 Because they are approximately in quadrature.
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operate a vector projection in the complex plane of
Q(A, ωd) on the base composed of the two phasors,
{Lfit+(ωd) ,Lfit−(ωd)}. To do so, we use the scalar product

〈a, b〉 ≡
[
Re(a)Re(b) + Im(a)Im(b)

]∣∣∣
ω=ωd

(15)

and the norm as |a|2 ≡ 〈a, a〉. With this structure, for
each value of A, the quantities N±(A) are the projec-
tions of Q(A, ωd) on the two phasors:

[
N+(A)

N−(A)

]
= 1

|Lfit−|2|Lfit+|2 − 〈Lfit−, Lfit+〉2

·
[ |Lfit−|2, −〈Lfit−, Lfit+〉
−〈Lfit−, Lfit+〉, |Lfit+|2

] [〈Q(A, ωd), Lfit+〉
〈Q(A, ωd), Lfit−〉

]

(16)

Equation (16) can be obtained by applying the scalar
product (15) between both sides of (14) and the two
phasors one at a time, and inverting the resulting sys-
tem of equations. Now the two nonlinear operatorsN±
are defined in the frequency domain by the two real-
valued describing functions N±(A) evaluated in (16).
In this section, we show how to calculate the memo-
ryless state-space realization N [u(t)] of a sinusoidal
input, real-valued describing function N (A). The nov-
elty proposed here is in using a Fourier–Bessel expan-
sion,which leads to good convergence properties,with-
out the use of iterative algorithms as proposed in [29].
We want to choose a convenient analytical structure
forN that is able to survive the evaluation of temporal
averaging that defines the describing function in Eq.
(1). We propose the following analytical structure for
N (u):

N (u) ≈ qerfμ,κ(u) +
Nb∑
n=1

cn J1(ûnu) (17)

for a suitable choice of the parameters μ, κ and of the
coefficients cn . The first term in (17) is a modified error
function, defined as:

qerfμ,κ(u) ≡κerf

[√
πμu

2κ

]
, erf(x) ≡ 2√

π

∫ x

0
e−t2dt

(18)

The function (18) is constructed in a way that the linear
gain is μ and the output saturates at κ:

∂qerfμ,κ(u)

∂u

∣∣∣
u=0

= μ lim
u→±∞ qerfμ,κ(u) = ±κ

(19)

The second term in (17) is a Fourier–Bessel series. The
function Jk(x) is the Bessel function of the first kind
of order k, and

ûn = ũn
W

, (20)

where ũn is the n-th root of J1(x) = 0, with ũ1 being
the smallest nonzero root, and W is a scaling factor.
The first derivative of (17) at the origin is

β ≡ μ + lim
u→0

∂

∂u

⎡
⎣ Nb∑

j=1

cn J1(ûnu)

⎤
⎦ = μ + 1

2

Nb∑
n=1

cnûn

(21)

The expansion (17) admits an analytical solution of the
integral (1):

N (A) = μe−k2A2
[
I0(k

2A2) + I1(k
2A2)

]

+ 2
Nb∑
n=1

cn
A
J0

(
ûn A

2

)
J1

(
ûn A

2

)
(22)

where k ≡
√

π
8

μ
κ
and Ik(x) is the modified Bessel

function of the first kind of order k. Compared with
a polynomial, this series expansion has the advantage
that it converges better far from the origin. The proof of
the identity (22) is reported in the “Appendix”. One can
then fit the coefficients μ, κ,W, {cn} to best approxi-
mate the known function on the LHS. First we choose
to fit the modified error function term to minimize its
distance to N (A), obtaining the value of k and μ.
Then the remaining terms are non-orthogonal func-
tions. For a fixed value of W , the fitting of a function
on a non-orthonormal base is explained in [41]. We
then look for the optimal value of the scaling factor
W leading to the best fit. One fitting with 40 terms
of the Fourier–Bessel series is presented in Fig. 5,
with the error reported in red on the right vertical axis.
Since at small amplitudes no experimental data are
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Fig. 5 Fitting of the two real-valued describing functions N−(A)

and N+(A) at fl = 180Hz, with N = 40 terms in the Fourier–
Bessel series. The original functions and their fit are reported,
respectively, with a continuous black line and a dashed cyan
line. They are barely distinguishable by eye, and their value is

reported on the left vertical axis of each figure. The absolute
value of their difference is reported in red and refers to the ver-
tical axis on the right. a Operator N−, saturating the input for
N−. b Operator N+, saturating the input for N+. (Color figure
online)

available (as discussed in Fig. 1), the operator has a
plateau close to the origin. To reduce the fitting error at
the end of the plateau where the first derivative is dis-
continuous, we locally apply a moving average filter
around the kink before proceeding with the fitting.

The proposed analytical structure (17) has proved
effective at fitting all the describing functions of the
example application, with an accuracy as good as the
one presented in Fig. 5, with usually 20 terms being
sufficient to provide a good fit. The fitting presented
in this subsection can be successfully used whenever
one needs to accurately represent in state-space a real-
valued smooth sinusoidal describing function.

2.5 The final state-space realization

This section collects the results of the previous subsec-
tions. The two linear operatorsL± admit the state-space
realization (13):

{
ẋ±(t) = A±x±(t) + B±uL±(t)

Q±(t) = C±x±(t) + D±uL±(t)
(23)

where uL± are the inputs of the two linear operators.
The matrices describing this linear system are calcu-
lated in Sect. 2.3. From Eq. (9b), these inputs are satu-
rated by the nonlinear memoryless functions N±:

uL± = N±[u(t)] (24)

where u is the input of the final operator. The two non-
linear saturationsN± have the analytical structure (17),
and the coefficients describing them are calculated in
Sect. 2.4. We can then put the two Eqs. (23) and (24)
together and obtain

{
ẋ±(t) = A±x±(t) + B±N±[u(t)]
Q±(t) = C±x±(t) + D±N±[u(t)] (25a)

The final output is then given by (4):

Q[u(t)] = Q−[u(t)] + Q+[u(t)] (25b)

Equations (25) fully describe the nonlinear state-space
realization, and the internal state of the operator is
{x+, x−}. This subsection concludes the description
of the nonlinear state-space realization, which will be
used in Sect. 3.2 in the example application in the time
domain.

3 Application

This section presents an application example of the
state-space realization. The example consists of a self-
excited system, schematically represented in Fig. 6,
where only one nonlinear operator Q is present.
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B ZL
ξ

u uds

Q Tr

upstream
acoustics

downstream
acoustics

Fig. 6 Sketch of the experiment. B and ZL are linear time-
invariant operators, with L being the length of the downstream
duct, which can be changed. ξ ≡ (ρc)ds/(ρc)us and Tr ≡
Tds/Tus are multiplicative factors, and Q(A, ω) is the nonlin-
ear operator considered in Sect. 2

In Sect. 3.1 we study the system in the frequency
domain with the harmonic balance method. In Sect. 3.2
we study it in the time domainwith the state-space real-
ization of the describing function introduced in Sect. 2.
We compare the results obtained with the two tech-
niques in 3.3.

We describe briefly the physics of the application
example in the rest of this part and later solve the prob-
lem in Sects. 3.1 and 3.2.

We model the experiment [7,31] of a confined, tur-
bulent, partially premixed swirling flame. The experi-
ment consists schematically of three parts: (1) the con-
figuration upstream of the flame, which includes the
burner and the swirler; (2) the flame, assumed to be
compact when compared to the length of the experi-
ment; (3) the exhaust gas tube of variable length L .

Since the focus of this article is on the nonlinear
flame model, we do not describe in detail the configu-
ration of the experiment, which can be found in [7,31].
The configuration upstream of the flame is fixed, and its
acoustic response is governed in the frequency domain
by the admittance B:

û =B(ω)
p̂

(ρc)us
(26)

where (ρc) is the characteristic impedance of the gas,
i.e. the product of density and speed of sound, the latter
being a function of temperature. Here and in the fol-
lowing, we indicate with a hat variables that depend on
frequency, e.g. û = û(ω), and we will drop the hat to

discuss time domain variables, such as u = u(t). The
variables p̂ and û in (26) are measured just upstream
of the flame surface and refer to acoustic pressure and
velocity.We avoid adding the subscriptus to both quan-
tities so as not to burden the notation in the previous
sections, where u can be interpreted more generally as
the input of a generic nonlinear operator Q, in con-
texts different from this application. We also assume
that the flame is compact in space, i.e. it is an interface
between the upstream and downstream geometry. In a
similar manner, the acoustics downstream of the flame
is described by the impedance ZL :

p̂ds
(ρc)ds

=ZL(ω)ûds (27)

This impedance depends parametrically on the length
L of the downstream duct, which can be varied.

At the flame interface, under the assumption of a low
Mach number flow, the pressure is continuous across
the flame interface [42], i.e. p̂ = p̂ds, which we rewrite
as:

p̂

(ρc)us
= (ρc)ds

(ρc)us

p̂ds
(ρc)ds

,
(ρc)ds
(ρc)us

≈ 0.48 (28a)

At the flame interface, the fluctuating heat release rate
induces a sudden expansion of the gas:

ûds = [1 + (Tds/Tus − 1) Q (A, ω)] û (28b)

The degree of this expansion depends on the ratio
Tds/Tus ≈ 4.27 of the temperatures in Kelvin degrees
downstream and upstream of the flame, and on the sen-
sitivity of the fluctuating heat release rate on acoustic
forcing, described by the describing function Q, which
depends on the amplitude A of the upstream veloc-
ity fluctuation, with u(t) = A cos(ωt). Equation (28b)
can be derived from [43] imposing the continuity of the
pressure at the surface.

All quantities describing the problem have either
been directly measured or estimated in [7,31].

3.1 Frequency domain

This section evaluates the amplitude and the frequency
of the limit cycles of the example problem using the
harmonic balancemethod.CombiningEqs. (26, 27,28),
we obtain this dispersion relation in ω:
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Fig. 7 Absolute value of the LHS of the dispersion relation (29)
describing the problem for L = 0.8m.Localminima are reported
with red crosses, and solutions with red circles. Only the portion
of the domain presenting solutions is shown.The value is rescaled
with the arctangent function to present a finite codomain [0 , 1]
for representation purposes. (Color figure online)

B(ω)
(ρc)ds
(ρc)us

ZL(ω) [1 + (Tds/Tus − 1) Q (A, ω)] = 1

The relation is parametric in the length L of the com-
bustion chamber. For the acoustic operators B and ZL ,
we fit a rational function approximation as described
in Sect. 2.3, but with a number of poles N = 12. The
rational function can then be evaluated at arbitrary val-
ues of s = σ + iω. On the other hand, we assume that
the flame response Q is independent of the growth rate
σ and extrude the value from the imaginary axis, cal-
culating it according to Q(A, Im[s] = ω). This leads
to the dispersion relation

HL [σ, ω, A] = 0 (29)

where

HL [σ, ω, A] = HL [s, A] ≡ T fit
L (σ + iω)

· [1 + (Tds/Tus − 1) Q (A, ω)] − 1
(30)

T fit
L (s) ≡ Bfit(s)

(ρc)ds
(ρc)us

Zfit
L (s) (31)

Equation (29) is a nonlinear eigenvalue problem in the
complex Laplacian variable s = σ + iω.

3.1.1 Linear stability analysis

In the linear regime, the amplitude A is zero and we
study the solutions of the problem HL [σ, ω, 0] = 0.
For each length L , the absolute value of HL is cal-
culated in a regular fine grid {σm, ωn} in the range of
interest, as reported for L = 0.8 in Fig. 7. A numerical
search of the zeros of the equation is then started from
the local minima of the map. These zeros are the linear
eigenvalues of the problem, reported for all lengths in
Fig. 8 in terms of growth rates and frequencies.

3.1.2 Nonlinear stability analysis

In this section, we discuss the existence and stability
of limit cycles in the system. Limit cycles are found
with HL [0, ω, A] = 0 because they represent peri-
odic oscillations with zero growth rate. We numeri-
cally search for them in a similar manner to the pre-
vious section, obtaining solutions (ω j , A j ). We then

Fig. 8 Eigenvalues of the linear problem for all the lengths L
of the downstream duct. The two plots represent the same data,
using two distinct vertical axes and colormaps. In a, the height
of the circles represents the growth rate σ , and the colour repre-
sents the frequency f of oscillation. In b, the height represents

the frequency, and the colour the growth rate. Eigenvalues with
large negative growth rate are not visible on the plot. a Nondi-
mensional growth rate. b Frequency of oscillation. (Color figure
online)
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Fig. 9 Nonlinear stability analysis, for all the lengths L of the
downstream duct. The two plots represent the same data: in a, the
height of the circles represents the limit cycle amplitude A, and
the colour the frequency f of oscillation; in b, the height rep-

resents the frequency, and the colour the limit cycle amplitude
A. Stable/unstable limit cycles are represented with filled/empty
circles. a Limit cycle amplitude of oscillation. b Frequency of
oscillation. (Color figure online)

Fig. 10 Eigenvalues of the nonlinear problem for a fixed length
L = 1m of the downstream duct, at discrete, equispaced ampli-
tudes of oscillation A. The two plots represent the same data,
using two distinct vertical axis and colormaps. In a, the height
of the circles represents the growth rate σ and the colour the fre-
quency f of oscillation. In b, the height represents the frequency,

and the colour the growth rate. Eigenvalues with large negative
growth rate are not visible on the plot. The vertical black lines
mark the amplitudes of the limit cycles, at which one growth rate
changes sign in (a). a Nondimensional growth rate. b Frequency
of oscillation. (Color figure online)

numerically perturb the amplitude of oscillation to
A j + δA and calculate the resulting perturbed eigen-
value δσ + i(ω j + δω j ). We then apply Loeb’s crite-
rion [15] and infer that the solution is stable/unstable
if δσ j/δA ≶ 0, assuming that only one frequency of
oscillation is present in the system. We carry out the
same analysis for all lengths L of the downstream duct
and report the amplitude and the frequency of the sta-
ble/unstable limit cycles with filled/empty circles in
Fig. 9. There is a region with multiple solutions, for L
between 0.99 and 1.02m, one approximately at 160Hz
and the other approximately at 130Hz.

A first observation regards the points at L =
0.99, 1.00m, where two distinct limit cycles approxi-
mately at 160Hz and at 130Hz coexist. In this scenario,
it is impossible to discuss the stability of the twomodes
without a dual-input describing function, which is not
available. Loeb’s criterion can be used only to provide
sufficient conditions for instability.

We then focus on the mode around 130Hz. We fix
in particular L = 1.00m, with the other lengths in the
region presenting a similar behaviour. We study the
eigenvalues of the problem as a function of the ampli-
tude of oscillation in Fig. 10. At a fixed length L in this
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region, there is one stable and one unstable limit cycles,
at approximately the same frequency. This differs from
a subcritical-Hopf bifurcation, because the stable limit
cycle has a smaller amplitude of oscillation then the
unstable limit cycle. We also observe that if the system
starts at the unstable limit cycle, it is attracted towards
a higher amplitude of oscillation, until the eigenvalue
disappears. It is then harder to make a definitive discus-
sionof the nonlinear, saturated state of the system in this
region. We, however, notice how the overall shape of
the unstable mode in Fig. 10a resembles a subcritical-
Hopf bifurcation. The time domain analysis of the sys-
tem will suggest the same behaviour.

The results from the frequency domain analysis are
for the most part consistent with the experiments [7].
However, not all of the features from the present analy-
sis could be observed in the experiment, in particular for
those conditions where the analysis predicts multiple
limit cycles.

3.2 Time domain

This section evaluates the amplitude and the frequency
of the limit cycles of the example problem running time
domain simulations. We first combine Eqs. (26, 27,
28a) and repeat (28b):

û = B(ω)
(ρc)ds
(ρc)us

ZL(ω)ûds ≡ T fit
L (ω)ûds (32a)

ûds = û + (Tds/Tus − 1) Q (A, ω) û (32b)

The operator T fit
L (ω) is introduced in Eq. (31), and we

use here its state-space representation

{
ẋT (t) = ALxT (t) + BLuds(t)

u(t) = CLxT (t)
(33a)

We instructed the tool VFIT3 to provide the best fit
with the feedthrough matrix DL set to 0, compare with
(13). The state-space model for (32b) is:

uds(t) = u(t) + (Tds/Tus − 1)Q[u(t)], (33b)

where the operator Q is fully described by Eq. (25).
These equations can be numerically integrated in
time with respect to the three internal state vectors
{xT , x−, x+} describing, respectively, the acoustic state

and the states of the two linear operators, see again (25).
At each time step, u(t) can be calculated with (33a),
and uds(t) can be calculated with (33b). Notice that if
DT were not set to 0 in (33a), an algebraic loop would
appear, because u(t) would depend on uds(t), but also
uds(t) would depend on u(t) because of (33b). This
would require a study of the problem in the context of
differential algebraic equations, with an additional root
solver operation at each time step.

As initial condition x = {xT , x−, x+}, we keep gen-
erating a new random initial condition until physical
values of uds(t) and u(t) result from (33a) and (33b).
In particular, the random initial state should predict a
value for the velocity u upstream of the flame such that
the flame response is defined for such an amplitude,
and such that the gain of the nonlinear operator is in a
limited range. The system is then time-integrated until
it converges to a limit cycle. An example is reported in
Fig. 11.

At L = 1.01m the system is linearly stable (see
Fig. 8a), and we check that the system converges to the
steady solution for a set of random initial conditions.
Subsequently, we forced the system with an external,
artificial harmonic source at the frequency of the least
stable linear mode, which we stop after �t = 0.2 s.
In this second case, the system converges to a stable
limit cycle. This scenario describes a subcritical-Hopf
bifurcation.

3.3 Comparison

To compare the time domain simulations with the fre-
quency domain simulations, we extract [44] the ampli-
tude and the frequency of the dominant harmonic from
the saturated limit cycle of u(t) of each simulation, run
for each value of the length L . In the first round of sim-
ulations, the design frequencyωd is set to the frequency
of the least stable mode of the linear stability analysis.
These results are reported with a continuous green line
in Fig. 12. We observe a general qualitative agreement
with the frequency domain results (coloured dots, the
same as Fig. 9).

We also run a second round of simulations, setting
ωd to the frequency of the saturated limit cycle of the
first round of simulations. We then run a third round
of simulations in the same way, reported with the con-
tinuous red line in Fig. 12. The agreement with the
frequency domain results is now much better.
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Fig. 11 Time simulation of the system of Eq. (33) for a fixed
value of the length L = 0.8m of the downstream duct. a Repre-
sents the time domain signal, and b the spectrum of the signal.
The system converges to a limit cycle. The third harmonic is vis-

ible in b. Analogous simulations are carried out for all lengths L .
a Velocity u(t) just upstream of the flame surface. b Estimated
power spectral density of u(t)

Fig. 12 Comparison of the results of the time domain (contin-
uous lines) and the frequency domain (the same circles as Fig.
9) approaches, in terms of amplitude (in a) and frequency of
oscillation (in b) of the saturated limit cycle. The green line is
obtained with a first time simulation by setting the flame model

design frequency ωd to the frequency of the least stable linear
mode (reported as black dots in b). The red line is obtained by
iterating the process two times. a Amplitude of oscillation A. b
Frequency of oscillation f . (Color figure online)

We finally report the normalized difference between
the two sets of results, as a percentage, in Fig. 13. The
error diminishes with the number of the iteration at
most points. It is larger in the transition zone discussed
at the end of Sect. 3.1.2, reported in the figure between
the two vertical dashed lines, where the analysis in the
frequency domain is harder. In particular, the error is
largest at L = 0.98, 0.99m, where it is fundamentally
not correct to compare the two approaches because the
analysis in the frequency domain is not complete: the
stability of the reported solutions can not be fully ascer-
tained and more solutions may exist.

4 Conclusions

We present a state-space realization Q of a describ-
ing function Q, combining two Hammerstein models.
For the linear part of the operators, we use a ratio-
nal function approximation, while for the nonlinear
part of the model, we propose the use of Fourier–
Bessel series. The evaluation of the realization is fully
automated and not iterative and allows the study in
the time domain of the behaviour of a system in a
range of frequencies centred around a design frequency
fd.
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Fig. 13 Error between the results obtained in the frequency
domain (subscript f ) and in time domain (subscript t), in percent-
age. The agreement is very good, except in the region where the

frequency domain stability analysis is not conclusive, delimited
by the two vertical dashed lines. aRelative error for the predicted
amplitude A. b Relative error for the predicted frequency f

We apply the tool to a thermoacoustic system, com-
paring the results of a time domain analysis using the
state-space realizationQwith the results of a nonlinear
frequency domain analysis using the original describ-
ing function Q.

In all the cases where the frequency domain analy-
sis is simple there is very good agreement between the
results, validating the accuracy of the state-space real-
ization proposed here.

In the other cases, the frequency domain analysis
is difficult or not possible without further information
about the system. In these latter cases, the state-space
realization can be used as a rough tool to isolate one
mode at a time and provide quick results.

This tool will be particularly useful in the study
of thermoacoustic oscillations in annular combustion
chambers, where a time domain approach to the prob-
lem has so far been more successful than a frequency
domain approach. It allows an accurate description of
the nonlinear saturation of the problem, improving on
existing time domain solvers [45–47].

We observe that it may be possible to change the
design frequency fd ofQ during the time domain sim-
ulation, by extracting in real-time the instantaneous fre-
quency of oscillation of the system and incrementally
retuning the model. The extraction could be done with
a nonlinear Kalman filter [48].

Acknowledgments This work was supported by the Euro-
pean Research Council through project ALORS N.259620
and by the German Research Association for Combustion
Engines (Forschungsvereinigung Verbrennungskraftmaschinen
e. V. FVV).

Appendix: Describing function calculation

In this appendix, we evaluate the describing function
(defined by (1)) of the saturation function N . We will
prove here the more general result for an input with
structure

u(t) = A1 cos(ωt + ϕ1) + A2 cos(ωt + ϕ2) (34)

to the functionN , as opposed to the case under consid-
eration in this article introduced in (1) where u(t) =
A cos(ωt). In particular, the input described by (34)
describes the contribution of two modes, oscillating at
the same frequency, instead of a single sinusoidal input
A cos(ωt +ϕ). The motivation to cover this more gen-
eral case is to make this framework usable in rotation-
ally symmetric annular combustors featuring azimuthal
modes. In that case, each burner is subject to the com-
bined input of two thermoacoustic modes, depending
on the amplitudes A1 and A2 of the two modes at that
location, and on their phases ϕ1, ϕ2. Once the result
for the input (34) is obtained, it will be sufficient to set
A1 = A, ϕ1 = ϕ2 = A2 = 0 to obtain the special
case of the single-input response used in this article, as
presented at the end of the appendix.

We proceed by rewriting u as

u = a cos(ωt) + b sin(ωt) (35)

by introducing the constants

{
a ≡ A1 cosϕ1 + A2 cosϕ2

b ≡ −A1 sin ϕ1 − A2 sin ϕ2
(36)
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Notice that a, b do not depend on the time variable
t . We study the averaging integral in the definition
(1) of describing function for the operator N , and we
will later divide by the amplitude A to recover the full
expression. In other words, for the time being we study
the product N (A, ω)A. We substitute in the product
Eq. (35) and change the time variable:

1

π

∫ 2π

0
N (a cos t+b sin t) (cos t+i sin t) dt= fc+i fs

(37)

We substitute the expression for N from (17):

fc = 1

π

∫ 2π

0
qerfμ,κ(a cos t + b sin t) cos tdt

+
N∑

n=1

cn
π

∫ 2π

0
J1(ûn(a cos t + b sin t)) cos tdt

≡ f erfc +
N∑

n=1

cn f
b,n
c (38a)

fs = 1

π

∫ 2π

0
qerfμ,κ(a cos t + b sin t) sin tdt

+
N∑

n=1

cn
π

∫ 2π

0
J1(ûn(a cos t + b sin t)) sin tdt

≡ f erfs +
N∑

n=1

cn f
b,n
s (38b)

We study first the integrals f erfc and f erfs due to the error
function in Sect. 4.1 and then each of the N integrals
f b,nc and f b,ns of the Fourier–Bessel series in Sect. 4.2.
We put together the expressions and discuss them in
Sect. 4.3.

4.1 Averaging the error function

We substitute the definition of qerfμ,κ from (18) into the
expression of f erfc and f erfs in (38). We obtain

f erfc = κ

π

∫ 2π

0
erf

(√
πμ

2κ
(a cos t + b sin t)

)
cos tdt

(39a)

f erfs = κ

π

∫ 2π

0
erf

(√
πμ

2κ
(a cos t + b sin t)

)
sin tdt

(39b)

For conciseness, we introduce the constant

k =
√

π

8

μ

κ
, (40)

so that the argument of the erf function is
√
2k(a cos t+

b sin t). This leads to neater expressions in the follow-
ing. We proceed by expressing the argument of the
exponential function as

a cos t + b sin t = R sin(t + ψ), (41)

where R and ψ are defined as

R ≡
√
a2 + b2 (42a)

ψ ≡ arg(b + ia) (42b)

The two integrals (39) become

f erfc = κ

π

∫ 2π

0
erf

(√
2kR sin(t + ψ)

)
cos tdt (43a)

f erfs = κ

π

∫ 2π

0
erf

(√
2kR sin(t + ψ)

)
sin tdt (43b)

We exploit the fact that the erf function is defined as an
integral itself and apply integration by parts to (43a):

fc
erf = κ

π

[
erf

(√
2kR sin(t + ψ)

)
sin t

]2π
0

− κ

π

2√
π

√
2k

∫ 2π

0
e−2k2R2 sin2(t+ψ)

× R cos(t + ψ) sin tdt (44)

The first term trivially vanishes. In the second, 2/
√

π

is the factor present in the definition (18) of the erf
function, and

√
2k comes from the chain rule of the

derivative of erf with respect to t , together with the
term R cos(t + ψ) inside the integral. Substituting the
definition of k from (40) only at its first occurrence into
the second term, we can simplify:

κ

π

2√
π

√
2k = μ

π
(45)

We now apply a change of integration variable t →
χ − ψ to the integral (44), and because the integrand
is periodic in t and then in χ , we keep the same limits
of integration in the new variable.
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f erfc = −μ

π
R

∫ 2π

0
e−2k2R2 sin2 χ cosχ sin(χ − ψ)dχ

(46)

We then expand the trigonometric term sin(χ −ψ) and
take the sum out of the integral. We obtain

f erfc = − μR [+Esc cosψ − Ecc sinψ] (47a)

f erfs = − μR [−Esc sinψ − Ecc cosψ] (47b)

where we introduced the integrals

Esc ≡ 1

π

∫ 2π

0
e−2k2R2 sin2 χ cosχ sin χdχ = 0 (48a)

Ecc ≡ 1

π

∫ 2π

0
e−2k2R2 sin2 χ cos2 χdχ

= 2

π

∫ π

0
e−2k2R2 sin2 χ cos2 χdχ (48b)

The first integral (48a) is zero since its integrand is odd.
In (48b), we exploited the fact that the integrand has
period π . We then use power reduction formulas on the
terms sin2 χ and cos2 χ :

Ecc = 2

π

∫ π

0
e−k2R2(1−cos 2χ) 1 + cos 2χ

2
dχ

= 1

2π

∫ 2π

0
e−k2R2(1−cos t)(1 + cos t)dt (49)

The integrand in (49) has period 2π and is an even
function of t , so:

Ecc = 1

π

∫ π

0
e−k2R2+k2R2 cos t (1 + cos t)dt

= e−k2R2
(
1

π

∫ π

0
ek

2R2 cos tdt

+ 1

π

∫ π

0
ek

2R2 cos t cos tdt

)

= e−k2R2
(
I0(k

2R2) + I1(k
2R2)

)
(50)

In (50), I0(x) and I1(x) are the modified Bessel func-
tions of the first kind of the zero order and first order,
respectively. We first substitute (50,48a) in (47), and
then we substitute R sinψ = a and R cosψ = b. We
obtain:

f erfc = a f erfnl (kR) (51a)

f erf2 = b f erfnl (kR) (51b)

with

f erfnl (kR) ≡ μe−k2R2
(
I0(k

2R2) + I1(k
2R2)

)
(52)

acting as a gain, as it multiplies the linear term in (51)
and depends on the amplitude of oscillation. The two
analytical expressions (51) have been compared with
the numerical integration of (38) and its counterpart for
a few values of μ, κ, a, b, and lead to relative errors of
the order of machine precision, thus confirming their
validity.

4.2 Averaging Bessel functions

The n-th term of f b,nc and of f b,ns in (38) are, respec-
tively,

f b,nc ≡ 1

π

∫ 2π

0
J1(2una cos t + 2unb sin t) cos tdt

(53a)

f b,ns ≡ 1

π

∫ 2π

0
J1(2una cos t + 2unb sin t) sin tdt

(53b)

where we introduced un ≡ ûn/2. We define f̂ b,nj =
f b,nc + i f b,ns and apply the substitution

z = eit , sin t = 1

2i

(
1 − 1

z

)
, cos t = 1

2

(
1 + 1

z

)

(54)

We obtain

f̂ b,nj = 1

π

∫ 2π

0
J1

(
un(a − ib)z + un(a + ib)

1

z

)
zdt

(55)

We now change the line integral into a contour integral
in the complex plane on the circle |z| = 1. From (54),
we have that dt = dz/ i z, and

f̂ b,nj = 1

π i

∮
|z|=1

J1

(
un(a−ib)z + un(a + ib)

1

z

)
dz

(56)
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The Bessel function J1(z) is an entire function, so the
only singularity of f̂ b,nj (z) is at the origin and is of the
essential type. We can then apply the residue theorem,

f̂ b,nj = 1

π i
2π iRes

[
J1

(
un(a−ib)z+un(a+ib)

1

z

)]
z=0

= 2Res [G(z)]z=0 (57)

We expand the Bessel function inG(z)with its Laurent
series:

G(z)=
∑
m=0

(−1)mu1+2m
n

m!(m + 1)!
(

(a−ib)z+(a+ib)/z

2

)1+2m

(58)

We substitute the binomial expansion of the power of
the sum

(
(a − ib)z + (a + ib)/z

2

)1+2m

= 1

21+2m

1+2m∑
k=0

zk−(2m+1−k)
(
1 + 2m

k

)

× (a − ib)k(a + ib)1+2m−k (59)

The residue in (58) is the sum of the coefficients of the
term 1/z. Therefore, in the sum (59), we retain only the
term with k− (2m+1− k) = −1, from which follows
k = m. This term of (59) is:

1

21+2m z−1
(
1 + 2m

m

)
(a − ib)m(a + ib)m+1

= a + ib

2

1

22m
z−1 (2m + 1)!

m!(m + 1)! (a
2 + b2)m (60)

Equation (57) evaluates to

f̂ b,nj =(a + ib)
∞∑

m=0

(−1)m(2m + 1)!u1+2m
n

(m!(m + 1)!)2
(
R

2

)2m

with R = √
a2 + b2. This series converges to

f̂ b,nj =(a + ib)
2J0

(
un

√
a2 + b2

)
J1

(
un

√
a2 + b2

)
√
a2 + b2

(61)

The two forcing terms (53) can be evaluated as the real
and imaginary parts of (61):

f b,nc = a f b,nnl (R) (62a)

f b,ns = b f b,nnl (R) (62b)

where we introduced

f b,nnl (R) ≡ 2
J0 (un R) J1 (un R)

R
(63)

4.3 Final expression

The final expression of fc and of fs is obtained by
substituting (51) and (62) into (38):

fc(a, b) = a

(
f erfnl (kR) +

N∑
n=1

cn f
b,n
nl (R)

)
= a fnl(R)

(64a)

fs(a, b) = b

(
f erfnl (kR) +

N∑
n=1

cn f
b,n
nl (R)

)
= b fnl(R)

(64b)

withun = ûn/2, the constant k = μ/κ
√

π/8 as defined
in (40), the value of R is defined in (42a) and

fnl(R) ≡ f erfnl (kR) +
N∑

n=1

cn f
b,n
nl (R) (65)

where f erfnl and f b,nnl have been defined, respectively,
in (52) and (63). The two terms fc and fs in (64)
are symmetric with respect to a, b, since we have
fc(a, b) = fs(b, a).
By exploiting the fact that limR→0 J1(R)/R = 1/2,

and then substituting (21), we observe that

lim
R→0

fnl(R) = μ +
N∑
j=0

cnun = μ + 1

2

N∑
j=0

cnûn ≡ β

(66)

where we substituted the property (21) in the last pas-
sage.

It can be proved that the first derivative at zero is

lim
R→0

∂ fnl
∂R

(R) = 0, (67)

meaning that fnl is constant at first order in R.
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In the case of the input described by a single sinusoid
A cos(ωt), it is sufficient to set A1 = A, ϕ1 = ϕ2 =
A2 = 0. In the definitions (36), this leads toa = A, b =
0, and the substitution of these in (64) leads to

fc(a, b) = A

(
f erfnl (k A) +

N∑
n=1

cn f
b,n
nl (A)

)

= A fnl(A) (68a)

fs(a, b) = 0 (68b)

The component in quadrature with the input signal u
is zero, and N (A) is real valued. Substituting (68) in
(37), because (37) is equal to N (A, ω)A, we obtain

N (A, ω) = fnl(A) (69)

with fnl matching the RHS of (22).
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