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ABSTRACT
Rotationally symmetric annular combustors are of practi-

cal importance because they generically resemble combustion
chambers in gas turbines and aeroengines, in which thermoa-
coustically driven oscillations are a major concern. We focus on
thermoacoustic oscillations of azimuthal type, neglect the effect
of the transverse acoustic velocity in the azimuthal direction, and
model the heat release rate as being dependent only on the pres-
sure in the combustion chamber. We study the dynamics of the
annular combustor with a finite number of compact flames equi-
spaced along the annulus, and characterise the flames’ response
with a describing function. We discuss with broad generality the
existence, amplitudes and the stability of standing and spinning
waves, as a function of: 1) the number of the burners; 2) the
damping in the chamber; 3) the flame describing function. These
have implications on industrial applications, the future direction
of investigations, and for what to look for in experimental data.
We then present as an example of application the first theoret-
ical study of triggering in annular combustors, and show that
rotationally symmetric annular chambers can experience stable
standing solutions.

NOMENCLATURE
A1,A2 slowly varying amplitudes of the 2 standing modes
Asp amplitude of a spinning wave that is solution of the prob-

lem

∗Address all correspondence to this author

Ast amplitude of a standing wave that is solution of the problem
G gain of the flame response
Nb Number of identical burners in the annular chamber
Q time-domain operator characterising the response of q to the

pressure p
Q describing function of the response of q to the pressure p
Re[Q] part of the flame response in phase with the pressure p
R j slowly varying amplitude of the pressure field along the an-

nulus at the j-th burner
Rst

j slowly varying amplitude of the pressure field along the an-
nulus at the j-th burner for a standing mode

Rsp
j slowly varying amplitude of the pressure field along the

annulus at the j-th burner for a spinning mode
Rmax maximum amplitude of oscillation of a spinning or stand-

ing solution, in the span of a limit-cycle and along the
annulus.

c j,s j cosine and sine functions, calculated at the azimuthal po-
sition θ j of the j-th burner

p non-dimensionalised pressure field
q non-dimensionalised heat release rate
r radial distance in cylindrical coordinates
r radial distance of the burners from the z axis
xxx point in the 3D domain in cylindrical coordinates, xxx=(z,r,θ)
z height in cylindrical coordinates
α equivalent acoustic damping of the annular chamber
∆θ angle between a burner and the next in the azimuthal direc-

tion, i.e. ∆θ = 2π/Nb
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ζ parameter fixing the position of the pressure anti-node of a
standing wave

η1(t),η2(t) instantaneous amplitudes of the 2 standing modes
θ azimuthal coordinate in cylindrical coordinate, θ ∈ [0 , 2π]

θ j value of the azimuthal coordinate of the j-th burner
φ phase of the flame response
ϕ1,ϕ2 slowly varying phases of the 2 standing modes
ϕ phase difference ϕ1−ϕ2 between the 2 standing modes
ψ1(xxx),ψ2(xxx) complex-valued eigenmode of the lin. problem
ω non-dimensionalised natural frequency of oscillation of the

2 oscillators
Ω spatial domain of the combustion chamber

INTRODUCTION
This paper tackles the problem of thermoacoustic instabili-

ties in annular combustors, and particularly the nonlinear satu-
ration of these instabilities to a limit-cycle. Large eddy simula-
tions [1,2,3] and laboratory scale experiments [4,5,6,7,8] present
both spinning waves, rotating either clockwise or anticlockwise
in the annulus, and standing waves, with pressure and velocity
nodes fixed in space. At the moment it is unclear what are the
governing factors leading to standing vs spinning solutions.

We focus on rotationally symmetric annular chambers, be-
cause the effect of a deviation from rotational symmetry has al-
ready been studied and can lead to stable standing solutions [9].

All1 low-order studies on rotationally symmetric annular
chambers have modelled the flame response as a function of
the local value of the acoustic pressure in the annular cham-
ber, or as a function of the longitudinal acoustic velocity in the
burner. They have shown that spinning waves were the only sta-
ble solution of the problem for specific families of heat release
rate responses, viz. monotonously saturating static nonlineari-
ties [11, 12, 13].

This article shows how to exploit the knowledge of the de-
scribing function of one burner to work out whether or not spin-
ning and standing modes are stable, by applying a weakly non-
linear analysis and the method of averaging.

We carry out the analysis for a generic describing function,
and obtain results that are mostly in line with the existing liter-
ature, though we show how and why standing solutions can be
stabilized2, and provide illustrative explanations for the complex
dynamics. We also provide measurable quantities in experimen-
tal data to study standing modes, which allow to test the validity
of the hypotheses of this model.

1with one exception, [10], discussed later
2 here and in the following standing and spinning solutions are limit-cycles of

the problem, so that for example a stabilized standing solution is a stable limit-
cycle, not a standing eigenmode of the problem with negative growth-rate.

PROBLEM GEOMETRY
We study an annular combustion chamber and adopt cylin-

drical coordinates z,r,θ , with the axis z corresponding to the axis
of symmetry of the chamber, and θ in [0 , 2π]. We assume that a
number Nb of equal burners are equispaced along the annulus by
an angle ∆θ ≡ 2π/Nb. We neglect the effect of a mean azimuthal
velocity Uθ . Refer to [14] for a detailed analysis of this effect in
a linear framework, still under the assumption that Uθ does not
affect the flames. We assume the flames to be compact so that
the fluctuating heat release rate is concentrated at the locations
of the burners:

q(xxx, t) =
Nb−1

∑
j=0

q j(t)δ (xxx− xxx j) xxx≡ (z,r,θ) , xxx j ≡ (0,r,θ j) (1)

where δ is the Dirac delta, r is the radial position of the burners,
and the plane z = 0 is at the interface between the combustion
chamber and the burners, which are located at the azimuthal po-
sitions θ j, given by:

θ j ≡mod
[
θ + j∆θ ,2π

]
, Nb ≥ 4 , j = 0,1, . . . ,Nb−1 (2a)

θ ≡π

4
+

∆θ

4
ζ

{
ζ ∈ {0,2} if Nb is even
ζ ∈ {0,1,2,3} if Nb is odd

(2b)

where mod[x,2π] is the remainder of the division of x by 2π . We
assume Nb ≥ 4, which is satisfied for practically relevant config-
urations. The addition of the constant θ and of the coefficient ζ

is arbitrary, and corresponds to a simple rotation of the frame of
reference, which will be useful later. For the time being, it suf-
fices to observe from (2) that the position at the angle θ = π/4:

for ζ = 0 is occupied by a burner;
for ζ = 2 is equispaced between 2 adjacent burners;
for ζ = 1 is 3∆θ/4 far from the preceding burner and ∆θ/4
far from the next.

FLAME RESPONSE
We assume that the heat release rate q j of the j-th flame

depends on the local perturbation field only. A successful and
common modelling approach consists of expressing q j in terms
of only the acoustic axial velocity v j in the burner upstream of
the flame. Doing so, we assume that the mean azimuthal velocity
Uθ has a negligible effect on the axisymmetry of the mean flame
shape, and more in general that the azimuthal, acoustic velocity
u does not affect the response. This last point is proved the-
oretically in the linear limit for axisymmetric premixed flames
in [15], and the effect of the loss of axisymmetry is discussed
in [16]. The effect is experimentally verified to be small at low
amplitudes of transverse forcing, for the cases of a burner po-
sitioned at pressure/velocity nodes, and for the case where it is
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swept by a spinning wave, where both u and v are excited at
the same time [17] (refer also to [18] for a linear discussion of
the transverse, forced flame response in frequency domain and a
literature review). This effect is usually not taken into account
because little is known in the nonlinear regime, i.e. at large am-
plitudes of oscillation typical of self-excited thermoacoustic os-
cillations. In this paper we make the same assumption, but point
out that the nonlinear effect of the transverse azimuthal velocity
u on each flame has been investigated in [10]. It does not affect
the linear stability properties of the system, but it does however
affect the nonlinear dynamics, and can stabilize2 standing modes
in axisymmetric annular chambers.

The longitudinal fluctuating velocity v j oscillating in the j-
th burner is related to the acoustic pressure difference ∆p j be-
tween the two sides of the burner, which are the chamber and
the plenum, under the assumption of burner’s acoustic compact-
ness [19], that allows the modelling of the burner as a lumped
element. However, if we consider 1 mode oscillating harmoni-
cally in time, and we assume that the burner transfer function of
the lumped element is linear with the amplitude of oscillation (as
validated for example in [20]), we have that ∆p j is proportional
to p j, and one can express v j as a function of the local value of
the pressure in the chamber p j. The same reasoning applies if
a pair of degenerate azimuthal modes oscillate at the same fre-
quency, as will be the case in the following. We then model the
heat release rate q j as a function depending on p j instead of v j.
In particular, we model the heat release response as a nonlinear,
time-invariant operator Q:

q j(t) = Q[p j(t)] (3)

The time-domain operator Q contains all the complexity of the
relation between p j and q j. We restrict our study to operators
Q that, excited with a harmonic input p = Acos(ωt), respond
strongly at the same input frequency ω and weakly at higher har-
monics 2ω,3ω, . . .. This assumption is usually called the filter-
ing hypothesis [21]. We observe however that this is a feature
of flames, acting like a low-pass filter on the acoustic input [22],
and is one of the reasons why frequency domain formulations
have proven successful in thermoacoustics even for limit-cycles
calculations.

We will study the problem both in the time domain and in
the frequency domain. We refer with the calligraphic symbol Q
to the the time domain operator. This operator in the frequency
domain is characterized here by the sinusoidal-input describing
function, which we denote with the upper-case Q, defined as:

Q(A,ω)≡ 1
A

1
π/ω

∫ 2π/ω

0
Q [Acos(ωt)]eiωtdt (4)

The real part and the imaginary part of Q(A,ω) express the am-

plitudes of the components of the output of Q respectively in
phase and in quadrature with the sinusoidal pressure input. In
particular it is the real part of Q that leads to a contribution to the
energy production term q(t)p(t) in the Rayleigh criterion: if pos-
itive, the contribution is positive. One can then define the gain G
and the phase ϕ of the flame response as the polar coordinates of
the complex number Q(A,ω):

Q(A,ω) = G(A,ω)eiφ(A,ω) (5){
G(A,ω) = |Q(A,ω)|
φ(A,ω) = arg[Q(A,ω)]

(6)

GOVERNING EQUATIONS
The governing equations of the problem were already de-

rived in [11, 9, 10] for a specific heat release response uniformly
distributed in the azimuthal direction. In this article the heat re-
lease response is concentrated at discrete positions and we keep
the flame response generic. The resulting equations are only
slightly different, and are reported in (12) and (13). The start-
ing point in these references are the fluctuating momentum and
fluctuating energy equation, in the time-domain, and a reason-
able, phenomenological choice of a truncated Galerkin basis.

On the contrary here we study the problem as weakly non-
linear, by assuming that the solution of the nonlinear problem is
a perturbation of the solution of the linearized problem, in fre-
quency domain:

p̂(xxx,ω) = [η̂1(ω)ψ1(xxx)+ η̂2(ω)ψ2(xxx)+ c.c.]+ ε p̂ε(xxx,ω) (7)

The two complex-valued modes ψ1(xxx) and ψ2(xxx) are standing
eigenmodes of the linearised, neutrally stable problem, and at the
burners positions they are proportional respectively to cosθ and
sinθ . We normalise the 2 modes so that at the burners’ position,
along the annulus the pressure field in time-domain is

p
(
xxx = (0,r,θ j), t

)
=[η1(t)cosθ j +η2(t)sinθ j]+ ε p̂ε(xxx, t) (8)

The η1(t) and η2(t) coefficients are the instantaneous amplitudes
of the 2 standing modes, and ε expresses the deviation of the
weakly nonlinear nonlinear solution from the exact solution. By
neglecting the correction ε p̂ε(xxx) we recover the coupled oscilla-
tors already derived in [9].

The details of the weakly nonlinear analysis are lengthy, and
not reported due to the page limit of this publication. The fol-
lowing serves as a trace, sufficient to reproduce the results to
people familiar with this type of analysis. We substitute (7) in
the damped Helmholtz equation with heat source. We multiply
by the complex conjugate ψ∗1 and integrate over the domain. In
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general, the eigenmodes are not orthogonal [23]. However, az-
imuthal modes in rotationally symmetric combustion chambers
are degenerate with geometric multiplicity 2, and share the same
frequency. Exploiting the orthogonality of the 2 modes and then
taking the inverse Fourier transform we obtain (9a):

∂ 2η1(t)
∂ t2 +α

∂η1(t)
∂ t

+ω
2
η1(t) = (9a)

Nb−1

∑
j=0

∂

∂ t
Q [η1(t)c j +η2(t)s j]µc j +O(ε)

∂ 2η2(t)
∂ t2 +α

∂η2(t)
∂ t

+ω
2
η2(t) = (9b)

Nb−1

∑
j=0

∂

∂ t
Q [η1(t)c j +η2(t)s j]µs j +O(ε)

where equation (9b) has been obtained similarly but by multiply-
ing by ψ∗2 instead of ψ∗1 , and we introduced the notation

{
c j ≡ cosθ j

s j ≡ sinθ j
(10)

The coefficients α and ω are respectively an equivalent damping
coefficient and the natural frequency of the oscillators, and are
both calculated in the linearised problem, and the coefficient µ is
a normalisation constant:

µ =

[∫
Ω

ψ1(xxx)ψ1(xxx)∗dΩ

]−1

(11)

where Ω is the combustion chamber’s domain. In the following
we set µ = 1, because it can be incorporated in the operator Q.

For simplicity of notation, we indicate the derivative with respect
to the time variable t simply with a prime. We neglect terms of
order O(ε) and recast the system (9) in the form:

η
′′
1 +αη

′
1 +ω

2
η1 = f1(η1,η2) (12a)

η
′′
2 +αη

′
2 +ω

2
η2 = f2(η1,η2) (12b)

where the functions fi at the RHS are:

f1(η1,η2) =
Nb−1

∑
j=0

Q′ [η1c j +η2s j]c j (13a)

f2(η1,η2) =
Nb−1

∑
j=0

Q′ [η1c j +η2s j]s j (13b)

We then assume the terms fi(η1,η2)−αη ′i to be small in both
oscillators and apply the method of averaging to the state-space
model (12). The resulting dynamic equations, which evolve on a
slower timescale, are called the slow flow equations of the prob-
lem. They describe the temporal evolution of the solution in
terms of the slowly varying amplitudes A1 and A2 of the 2 stand-
ing modes and of their phase difference ϕ ≡ ϕ1−ϕ2, by which
we can rewrite the expression of the pressure field described in
(8):

p(θ , t) = A1 cos(ωt +ϕ1)cosθ +A2 cos(ωt +ϕ2)sinθ (14)

where the Ai and ϕi are slowly varying time variables,
of a slower timescale T . The slow flow equations are:

A′1 =−
α

2
A1 +

1
2

Nb−1

∑
j=0

G(R j,ω)
[
A1c2

j cosφ(R j,ω)+A2c js j cos(φ(R j,ω)+ϕ)
]

(15a)

A′2 =−
α

2
A2 +

1
2

Nb−1

∑
j=0

G(R j,ω)
[
A2s2

j cosφ(R j,ω)+A1c js j cos(φ(R j,ω)−ϕ)
]

(15b)

ϕ
′ =

1
2

Nb−1

∑
j=0

G(R j,ω)

[
(s2

j − c2
j)sinφ(R j,ω)− c js j

(
A2

A1
sin(φ(R j,ω)+ϕ)− A1

A2
sin(φ(R j,ω)−ϕ)

)]
(15c)
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We study these equations to calculate the amplitudes of the
solutions, their spatial structure and their stability. The quantity
R j in (15) is the local amplitude of oscillation of pressure at the
j-th burner:

R j(A1,A2,ϕ) =
√
(A1c j)2 +(A2s j)2 +2A1A2c js j cos(ϕ) (16)

where the terms A1c j and A2s j are the amplitudes of the pressure
of the 2 modes η1,η2 at the position θ j. The quantity R j is the
argument of the flame gain G and of the flame phase response φ ,
which both in turn govern the nonlinear saturation effect. This
means that small values of R j lead to a quasi-linear response of
the j-th burner, while large values of R j lead to a strongly non-
linear response.

We restrict the domain of study of the problem to
(A1,A2,ϕ) ∈ R+×R+× [0 , π) by exploiting the symmetries of
the equations.

In the following section we discuss the structure of stand-
ing and spinning waves. Notice that waves are here considered
as possible initial conditions of the problem at hand at a certain
instant of time, and the system can drift away from this initial
state as time evolves. We oppose these to standing and spinning
solutions, which are waves that are also periodic solutions of the
problem. The amplitude of oscillation of these solutions is con-
sidered in the following section. A third section discusses finally
the stability of these solutions. A section with an example appli-
cation follows.

STANDING AND SPINNING WAVES
We prove in this section that a point with coordinates

(A1,A2,ϕ) = (A,A,kπ/2) is always a standing or a spinning
wave:

(A,A,kπ/2)

{
k even ⇔ p(θ , t) is a standing wave
k odd ⇔ p(θ , t) is a spinning wave

(17)

Spinning wave
A spinning wave of amplitude A travels with a phase speed

equal to ∓1 either in clockwise/anticlockwise direction:

p =Acos(ωt +ϕ1±θ)

=Acos(ωt +ϕ1)cosθ +Acos(ωt +ϕ1±π/2)sinθ (18)

By comparing this with (14), we observe that for a spinning wave
we have A = A1 = A2 and ϕ = ±π/2, with the ± sign respec-
tively for a mode rotating in the counter-clockwise or clockwise
direction. We present in Figure 1 the pressure field p(θ , t) ob-
tained from (18), nondimensionalized with respect to the ampli-
tude A, at 2 instants of time. As the wave moves to the right

(anticlockwise direction), it maintains the same amplitude of os-
cillation. We now simplify the expression R j(A1,A2,ϕ) by sub-

π/4 3π/4 5π/4 7π/4

θ

−
√

2

−1.0

−0.5

0.0

0.5

1.0

√
2

p
(θ

)/
A

standing

spinning

FIGURE 1: PRESSURE FIELD OF A SPINNING WAVE
(BLUE) FROM EQUATION (18) AND OF A STANDING
WAVE (RED) FROM EQUATION (20) AT 2 INSTANTS OF
TIME.

stituting A1 = A2 and ϕ = π/2 in (16), obtaining

Rsp
j = A (19)

This means that the amplitude of oscillation of a spinning wave
is constant along the annulus, see Figure 2.

Standing wave
A standing wave has velocity and pressure nodes fixed in

time, i.e.

p =
√

2Acos(ωt +ϕ1)cos(θ −π/4) (20)

where the
√

2 factor will be explained later, and we decided to
choose a frame of reference with a pressure anti-node at θ = π/4.
This can be rewritten as

p = Acos(ωt +ϕ1)cosθ +Acos(ωt +ϕ1)sinθ (21)

By comparing (21) with (14), we observe that we have
(A1,A2,ϕ) = (A,A,0). This is why we put a

√
2 factor in equa-

tion (20) in the first place. We present in Figure 1 the pressure
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π/4 3π/4 5π/4 7π/4

θ

0.0

0.5

1.0

√
2

R
/
A

Rst (θ)/Ast

Rsp (θ)/Asp

FIGURE 2: AMPLITUDE OF OSCILLATION OF A STAND-
ING WAVE (RED LINE) FROM EQUATION (22) AND OF
A SPINNING WAVE (BLUE LINE) FROM EQUATION (19).
THE DASHED LINE IS THE AMPLITUDE OF THE VELOC-
ITY FIELD OF A STANDING WAVE. THESE AMPLITUDES
ARE CONSTANT IN TIME, AS OPPOSED TO THE PRES-
SURE FIELDS IN FIGURE 1.

field p(θ , t) obtained from (20), non-dimensionalized with re-
spect to the amplitude A, at 2 instants of time t = −ϕ1/ω (con-
tinuous red line) and t +∆t =−(ϕ1 +π/3)/ω (dashed red line).
The position of the pressure nodes is fixed in space.

We can prove that if the number of burners Nb is even there
can be a total of Nb distinct standing waves that are solutions.
Half of these standing solutions present one of their pressure anti-
nodes at the position of one burner, and the others present one of
their pressure anti-nodes exactly between 2 burners. Their ve-
locity nodal lines are reported respectively in black and grey in
Figure 3.a. This is consistent with the standing modes observed
in the MICCA annular combustor at the laboratoire EM2C (Ecole
Centrale Paris), equipped with 16 burners. When the burners are
of the swirl type, the standing modes are highly stochastic, but
the nodal line exhibits a preferential position between 2 burn-
ers [7]. When equipped with matrix burners, the system is less
stochastic and the velocity nodal line stays again between 2 burn-
ers [24, 25].

We can prove that if the number of burners Nb is odd there
can be a total of 2Nb distinct standing waves that are solutions.
Half of these standing solutions present one pressure anti-node
exactly between 2 burners and the other pressure anti-node at
one burner on the opposite side. Their velocity nodal lines are
reported in black in Figure 3.b. The other standing solutions
present both pressure anti-nodes distant ∆θ/4 from 2 different

burners, and their velocity nodal lines are reported in gray in the
figure.

ζ = 0

ζ = 2

(a) EVEN NUMBER OF BURNERS, E.G. HERE Nb = 16

ζ = 0ζ = 1

ζ = 2

ζ = 3

(b) ODD NUMBER OF BURNERS, E.G. HERE Nb = 15

FIGURE 3: POSITION OF THE VELOCITY NODAL LINES
OF ALL POSSIBLE STANDING SOLUTIONS. THE VE-
LOCITY NODAL LINES LINK 2 PRESSURE ANTI-NODES,
AND ONLY THE LINES FULLY CONTAINED IN THIS
SECTION ARE REPORTED. THE BURNERS ARE REPRE-
SENTED WITH LARGE BLACK DISCS, AND THE SEMI-
CIRCLES ARE THE INTERNAL AND EXTERNAL WALLS
OF THE CHAMBER. IN a) THE NUMBER OF BURNERS Nb
IS EVEN AND EACH BURNER FACES ANOTHER BURNER
ON THE OTHER SIDE OF THE ANNULUS. IN THE AN-
GLE ∆θ = 2π/Nb WE HAVE ONE BLACK AND ONE GRAY
LINE FOR A TOTAL OF 2 STANDING WAVES FOR EACH
BURNER. IN B) THE NUMBER OF BURNERS IS ODD,
AND EACH BURNER FACES THE SPACE BETWEEN 2
OTHER BURNERS ON THE OTHER SIDE OF THE ANNU-
LUS. THERE ARE A TOTAL OF 4 STANDING WAVES FOR
EACH BURNER.

We decide, instead of studying in a fixed frame of refer-
ence all the possible standing waves with different orientations
just presented, to study each standing wave in an ad-hoc rotated
frame of reference where A1 = A2. This means that at θ = π/4
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the mode presents a pressure anti-node. By varying the value of
ζ in (2), we can choose to study a mode with a pressure anti-
node at different positions, as discussed just below equation (2)
and sketched in Figure 3.

We then evaluate the structure of R j(A1,A2,ϕ) by substitut-
ing in (16) the expressions (17). We obtain

Rst
j = A

√
1+ sin(2θ j) =

√
2A|cos(θ j−π/4)| (22)

The amplitude of oscillation R is maximum at θ j = π/4, where
pressure anti-nodes are located, and zero at pressure nodes. This
can be observed in Figure 2, where we present the pressure am-
plitude of oscillation R with a continuous red line as a continuous
function of θ .

In the following, we will discuss the amplitudes of the 2
modes in terms of their maximum amplitude in space and time.
They are trivially

Rsp
max =Asp (23a)

Rst
max =Ast

√
2 (23b)

AMPLITUDES OF SPINNING AND STANDING SOLU-
TIONS

The standing and spinning waves introduced in the previ-
ous section are solutions of the problem only if (A1,A2,kπ/2) =
(A,A,kπ/2) is a fixed point3 of (15). This means that standing
and spinning waves (A,A,kπ/2), though valid initial condition
of the problem, are not necessarily solutions, and the system may
drift away from such an initial condition.

Spinning solution
We prove that there exists a spinning wave with amplitude A

that is solution of the problem if we can solve the equation:

Fsp(A) = α (24)

where we introduced

Fsp(A)≡ Nb

2
Re [Q(A,ω)] (25)

Notice how Re [Q(A),ω] is the component of the response of the
flame that is in phase with the pressure p on the limit-cycle. It

3notice that the equations (15) are the averaged equations of (9), so that a
fixed point of (15) is a limit-cycle of (9), and in turn it is an oscillatory pressure
field (of the original partial differential equation) that is a solution.

is possible to prove that the condition (24) can be obtained from
the Rayleigh criterion:

∫
Ω

∫
T
[q(xxx, t)−α p(xxx, t)] p(xxx, t)dtdΩ = 0. (26)

Standing solution
We prove that there exists a standing wave with amplitude A

if we can solve the equation:

Fst(A) = α (27)

where we introduced

Fst(A)≡1
2

Nb−1

∑
j=0

(1+ sin(2θ j))Re
[

Q
(

A
√

1+ sin(2θ j)

)]
(28)

Also in this case, the condition (27) can be obtained from the

Rayleigh criterion (26).

STABILITY OF SPINNING AND STANDING SOLUTIONS
By calculating the eigenvalues of the Jacobian of the system

(15), we can establish necessary and sufficient conditions for the
stability2 of the solutions. These calculations are too long even
to be reported in an appendix, and do not add physical insight to
the problem.

Stable spinning solutions
We find that a spinning solution with amplitude Asp is stable

if and only if

Re
[
Q′(Asp)

]
<0 (29)

In the equation, the prime indicates a derivative with respect to
the argument A. Notice that this condition could be obtained
by deriving with respect to the amplitude A the Rayleigh crite-
rion (26). It follows that the condition (29) requires the flame
response to be weaker than the damping at amplitudes larger
than Asp, and stronger than the damping at amplitudes smaller
than Asp. This condition is the same stability condition as that of
stable thermoacoustic limit-cycles in longitudinal configurations,
and has a very intuitive physical interpretation.

Moreover, notice that if one assumes that the flame does not
extinguish, (i.e. formally that the describing function is defined
and continuous at all amplitudes, and that the gain eventually
goes to zero at infinite amplitudes) and that the damping is not
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large enough to kill off completely thermoacoustic instabilities
(granted in all cases of interest), then there necessarily exists a
stable spinning solution, whatever the flame response is.

This has a few implications for a combustor exposed to a
reasonably high degree of background noise with a reasonably
large number of burners, which is the typical industrial case:

1. the dynamic state of a rotationally symmetric combustor will
spend some intervals of time in the vicinity of the spinning
solutions, and one pressure sensor will be sufficient to detect
if the system is undergoing a thermoacoustic instability.

2. if a combustor, pushed by the background noise, does not

present a spinning solution as a noisy attractor, either it is
not rotationally symmetric, or some other factor is playing a
key role in the dynamics. One factor that has already been
investigated is transverse forcing [10]. Other factors may
contribute as well: little is know on dynamical effects of the
temperature distribution.

Stable standing solutions
There are 3 necessary and sufficient conditions for

the stability of a standing solution with amplitude Ast :

Fst′(Ast)< 0 (30a)[
Nb−1

∑
j=0

c js jRe
[
Q(Ast√1+2c js j,ω)

]
−Ast 1

4

Nb−1

∑
j=0

(c2
j − s2

j)
2√

1+2c js j
Re
[
Q′(Ast√1+2c js j,ω)

]][Nb−1

∑
j=0

c js jRe
[
Q(Ast√1+2c js j,ω)

]]
+[

Nb−1

∑
j=0

c js jIm
[
Q(Ast√1+2c js j,ω)

]
−Ast 1

4

Nb−1

∑
j=0

(c2
j − s2

j)
2√

1+2c js j
Im
[
Q′(Ast√1+2c js j,ω)

]][Nb−1

∑
j=0

c js jIm
[
Q(Ast√1+2c js j,ω)

]]
> 0

(30b)
Nb−1

∑
j=0

c js jRe
[
Q(Ast√1+2c js j,ω)

]
−Ast 1

8

Nb−1

∑
j=0

(c2
j − s2

j)
2√

1+2c js j
Re
[
Q′(Ast√1+2c js j,ω)

]
> 0 (30c)

In the equations, the prime indicates a derivative with respect
to the argument A. The first condition (30a) follows exactly the
same interpretation of the condition (29) for the spinning solu-
tion: if a standing mode is stable, at amplitudes larger then Ast

the damping losses are larger than the energy gains. Again, this
can be explained with the derivative of the Rayleigh criterion
with respect to the amplitude Ast of oscillation.

We now consider the asymptotic limit for a large number of
burners of the second (30b) and third (30c) condition because it
will provide both a simplification and the interpretation of the 2
conditions. In the limit Nb → ∞, we have that the summations
can be replaced by integrals in θ over the domain [0 , 2π], and
we recover a uniformly distributed heat release rate model, more
common in the literature [11, 9, 10]. For a large number of burn-
ers, flame merging may occur, and would change the describing
function Q of the individual flames. The analysis still holds, but
in the following results one should interpret Q as the describing
function of the ensemble response of an infinitely small wedge
of the annulus, populated by many flames.

One can prove that the second condition (30b) simplifies to
0 > 0 for Nb → ∞, and it is not respected, and the standing so-

lution is not stable. However, the standing solution is neutrally
stable, because for neutral stability the condition (30b) evaluates
to 0≥ 0. This means that the standing mode solution is insensi-
tive to a shift of the fixed point in a certain direction, which is a
rotation of the nodal line of an arbitrary angle in the azimuthal
direction. This neutral stability of standing solutions is known in
models with uniformly distributed heat release rate, as discussed
in [10], and obviously can be traced back to the axisymmetry of
the problem for Nb → ∞. On the other hand, for a finite num-
ber of burners we have a fixed number of possible positions of
the nodal lines (see Figure 3), and the condition (30b) discusses
if a certain family of standing solutions is stable/unstable in the
azimuthal direction.

The third condition, in the limit Nb→∞, and generalized to a
thermoacoustic mode with azimuthal wavenumber4 n, simplifies
to

N2n ≡
∫ 2π

0
Re
[
Q(Ast

√
1+ sin(2nθ),ω)

]
sin(2nθ)dθ ≥ 0 (31)

4 i.e. the number of periods of the mode in the azimuthal direction θ between
0 and 2π .
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We recall that Q(A,ω) is the describing function of the flame
response to a harmonic input of amplitude A, and ω is the fre-
quency of the standing solution. The argument Ast

√
1+ sin(2θ)

is the spatial distribution of the pressure amplitude of oscillation
of the standing solution reported in red in Figure 2.

Before discussing further the condition (31), we recall from
[9] the quantity5:

C2n =
∫ 2π

0
Re[Qθ (0,ω)]sin(2nθ)dθ (32)

This coefficient C2n is the harmonic at 2θ of the linear heat
release response6 along the annulus, and n is the azimuthal
wavenumber4 of the oscillation. In the integral (32) the lin-
ear response Qθ depends directly on the azimuthal angle θ ,
while in the integral (31) the response depends only indirectly
on the azimuthal angle through the amplitude of the forcing
Ast
√

1+ sin(2θ). Noiray et al. [9] consider a simple heat release
response q = β (θ)p− p3, and prove that:

1. for a rotationally symmetric chamber C2n = 0 the system
stabilizes towards a spinning solution,

2. for small asymmetry in the 2nθ component, i.e. for inter-
mediate values of C2n, the system stabilizes to a mixed spin-
ning/standing mode

3. for large asymmetry, in the 2nθ component, i.e. large values
of C2n, the system stabilizes to a standing mode

The coefficient C2n is a linear property of the system (in the sense
that it describes the azimuthal variation of the transfer functions
of the flames, that are linear operators): only the specific loss of
rotational symmetry in the 2θ component affects the nature of
the solutions.

This paper focuses on rotationally symmetric configura-
tions, where C2n is fixed to zero. Nonetheless, N2n introduced
in (31) has strong analogies to C2n.

The coefficient N2n is a nonlinear property of the system (be-
cause it is measured on the limit-cycle with amplitude Ast ): it is
the 2nθ component of the nonlinear, amplitude dependent gain
Re[Q] that affects the stability of standing modes:

1. If N2n < 0, standing solutions are not stable
2. If N2n > 0, standing solutions are stable

In experiments, one can measure N2n as

N2n =
∫ 2π

0
Re[Qst

θ ]sin(2nθ)dθ (33)

5we use here a slightly different notation and definition of C2n for simpler
comparison with the conventions adopted in this paper, though the same exact
role/meaning of [9] holds.

6i.e. transfer function

where the frame of reference is chosen such that p(t) has a pres-
sure anti-node at θ = π/4, and Qst

θ
is the transfer function be-

tween local values of heat release rate and pressure fluctuations,
calculated from the data of a self-excited annular combustor ex-
periencing a stable2 standing mode with azimuthal wavenumber4

n.

EXAMPLE: THERMOACOUSTIC TRIGGERING IN AN-
NULAR COMBUSTORS

In this section we consider an example of application, for an
annular combustor with a non-trivial flame response, as opposed
to the simpler heat release models used so far in the literature.
We have noticed that it is the real part of the describing function
that plays the dominant role in determining the amplitudes of
the solutions, see equations (24,27). This in turn depends on
nonlinear gain and phase response. It is possible to show that
both the gain and the phase dependence on amplitude can explain
the occurrence of stable standing solutions.

In this example we focus on the effect of the gain. To iso-
late this effect, we fix the dependence of the phase response φ

to be constant, φ(A,ω) = π/5. To make the example more com-
pelling, we use as flame response the data from [26], which is
an experimental and modelling study of a thermoacoustic system
exhibiting a subcritical instability, i.e. triggering. The instan-
taneous spatially integrated OH-chemiluminescence response of
the experiment is reported with black dots for a run of the ex-
periment in Figure 4.a, as a function of the longitudinal velocity
at the burner. Notice how the response is initially linear, then
drops a little approximately between 0.5 and 0.8, to then regain
strength at larger amplitudes at around 1. This figure does not
contain any information about the phase response, which we are
keeping constant. We assume that the heat release response is
proportional to the OH-chemiluminescence, and extract the gain
of the response as

G(û/u) =
|ÎOH|/IOH

|û|/u
(34)

We are going to study the problem in non-dimensional time, so
that the period of the thermoacoustic oscillation is 2π , and ω = 1.
Under the hypothesis of acoustically compact burners, we have
that G(A) ∝ G(û/u), where A is the amplitude of oscillation of
the pressure at the burner’s location in the chamber. We scale the
gain G, reported in Figure 4.b with a black line, both horizontally
and vertically:

1. the horizontal scaling occurs because at the burner p̂ =
Z(ω)û; since we do not have the exact impedance value we
rescale it so that the pressure amplitude of oscillation is in
the range [0 , 1];

2. the vertical scaling is carried out to account for typical
growth-rates/damping coefficient values of annular combus-
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(a) INSTANTANEOUS FLAME RESPONSE IN THE SELF-
EXCITED EXPERIMENT [26]
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FIGURE 4: a) INSTANTANEOUS AMPLITUDES OF
THE DOMINANT FOURIER COMPONENT OF OH-
CHEMILUMINESCENCE AND OF THE LONGITUDINAL
VELOCITY AT THE BURNER’S POSITION, TAKEN
FROM [26]. b) EXTRACTED GAIN USING EQUATION (34).
THE RESULT HAS THEN BEEN SCALED IN BOTH AXES
A AND G.

tors in nondimensional frequency units, obtained from ex-
perimental data, see e.g. [27].

Notice how in Figure 4.b the gain G first drops, to then in-
crease again before decreasing with the amplitude A.

We now fix the number of burners Nb to 6, and study 2 com-
bustors that differ only in the amount of acoustic damping α1,α2.
The amplitudes of the spinning and standing solutions are the
solutions of the equations (24,27). We study these equations as
function of the maximum amplitude Rmax, in time and space, as

introduced in equation (23). We present in Figure 5 the LHS of
the equations (24,27): 1) the function Fsp(Rmax) in blue to dis-
cuss spinning modes; 2) the function Fst,0(Rmax) in red, to dis-
cuss the standing mode with a pressure anti-node at the location
of one burner (ζ = 0); 3) the function Fst,2(Rmax) in magenta,
to discuss the standing mode with a pressure anti-node located
exactly between 2 consecutive burners (ζ = 2).

The solutions are the intersections of these curves with the
horizontal black lines at the 2 ordinates α1,α2, reported with
dashed and dashed-dotted lines in Figure 5. We can use the con-
ditions (29,30) to discuss the stability of the solutions, and we
plot each of them with a filled/empty circle if the solution is re-
spectively stable/unstable.

We first define 2 critical values of damping, reported in the
Figure with 2 horizontal black lines:

αl ≡ Fsp(0) = Fst,ζ (0) (35)
αh ≡max{Fsp} (36)

Notice how we do not have data about the flame response at am-
plitudes larger than 1. We assume that the response decreases
monotonically with amplitude there when we calculate αh in
(36). We can define 3 ranges of study for the damping coeffi-
cient α:

1. if α < αl , one can prove with a linear stability analysis on
(12) that the fixed point is linearly unstable;

2. if αl < α < αh the fixed point is linearly stable, but there
exist standing and spinning solutions at large amplitudes of
oscillation. The system is capable of thermoacoustic trigger-
ing;

3. if αh < α the fixed point is linearly stable, and we cannot
find standing or spinning solutions. The system is globally
stable, in the sense that the damping is large enough to kill
off completely thermoacoustic instabilities.

The first value of damping α1 = 0.085 in Figure 5 belongs
to the first case, while the second value of damping α2 = 0.105
belongs to the second case. Notice how at α = α1 the only stable
solution is of spinning type, while at α = α2 both standing and
spinning solutions are stable.

We can carry out the same analysis for any value of the
damping α , reported in Figure 6.a. We omit the horizontal lines
corresponding to the different values of the damping, and we
draw the functions F with a thick/thin line wherever these so-
lutions are respectively stable/unstable. As expected, the acous-
tic damping coefficient α strongly affects the amplitude of the
solutions, but it also affects the type of stable solutions.

We stress that the 3 functions F are not plotted for ampli-
tudes larger than 1, because there is no data available at these
amplitudes. If the response of the flame Q decreases monotoni-
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FIGURE 5: AMPLITUDE OF OSCILLATION Rmax OF SPIN-
NING (BLUE) AND STANDING (RED/MAGENTA) SOLU-
TIONS FOR A COMBUSTOR EQUIPPED WITH 6 BURN-
ERS. WE CONSIDER 2 COMBUSTORS THAT DIFFER
ONLY IN THE ACOUSTIC DAMPING COEFFICIENT α , RE-
PORTED WITH THE 2 HORIZONTAL BLACK LINES. THE
SOLUTIONS ARE CIRCLES, WHICH ARE FILLED/EMPTY
IF THE SOLUTION IS STABLE/UNSTABLE.

cally with amplitude, we have for example that at α = α1 there
will be 3 more solutions at amplitude larger than 1.

We can then generalize the analysis to any number of burn-
ers Nb. We present in Figure 6 the result for 6,7,8,9 burners, for
an arbitrary value of the damping. We observe that the stability
and the amplitudes of the standing modes is strongly affected by
the number of burners.

This example shows how a flame that responds with a weak
gain at low amplitudes (in the linear regime) and with a stronger
gain at larger amplitudes (closer to the saturated amplitude of
a standing solution), because it respects the condition (33), can
present stable standing solutions. These occur only if the system
can exhibit triggering, hence the strong dependence on the damp-
ing coefficient α . Moreover, the condition (33) is only a simpler
and approximate abstraction to look at the stability of standing
solutions, because the number of burners Nb affects the exact po-
sition of the burners along the annulus in the stability conditions
(30b,30c).

Notice how this is just one example of stable standing so-
lutions, and we are not here implying that thermoacoustic trig-
gering is a necessary condition for stable standing solutions to
occur.

CONCLUSIONS
We discuss azimuthal thermoacoustic oscillations in annular

combustors. The key assumptions of this work are: 1) there is
no effect of transverse forcing and no adjacent flames’ interac-
tion; 2) only one degenerate pair of modes of azimuthal nature
oscillates; 3) the weakly nonlinear formalism is applicable; 4)
the flames are acoustically compact.

The amplitude of spinning solutions is fixed by the Rayleigh
criterion at the limit-cycle. The same criterion provides also the
condition for stable spinning solutions: the energy balance must
be negative at larger amplitudes of oscillation, as for thermoa-
coustic oscillations in longitudinal configurations.

Also the amplitude of standing solutions is fixed by the
Rayleigh criterion at the limit-cycle. However, the same crite-
rion provides only 1 of 3 stability conditions for standing solu-
tions: the energy balance must be negative at larger amplitudes
of oscillation.

There are 2 more conditions for stable standing solutions:

1. the condition (30b) discusses the stability of a standing mode
with respect to a rotation of its velocity nodal line in the
azimuthal direction. This condition disappears for the case
with a large number of burners Nb, in which every azimuthal
orientation is allowed for standing solutions;

2. we show that the azimuthal Fourier component 2θ of the
part of the flame response in phase with the pressure in a
limit-cycle of a standing solution, called N2n and defined
in (31), is the most stringent condition for a large number
of burners Nb. If N2n is positive there exist stable standing
solutions. This conjecture can be tested from experimental
data of stable standing solutions to validate the hypotheses
of this theory.

We then present an example of the analysis that shows that
an annular combustor capable of thermoacoustic triggering can
present stable standing solutions. We predict amplitudes and sta-
bility of the spinning and standing solutions, parametrically in
the damping coefficient α and in the number of burners Nb of the
combustor.

We obtained some implications for industrial annular com-
bustors as well. The occurrence of stable standing solutions is
related either: 1) with a non-rotationally symmetric combustor;
2) with a flame response that is weak at small amplitudes and
strong at large amplitudes, so that the condition (31) holds; 3)
with other physical mechanisms, such as for example transverse
forcing, dynamical temperature effects, or the effect of a mean
azimuthal flow on the flame response.
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