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This paper concerns the influence of the phase of the heat release response on thermoacoustic systems. 

We focus on one pair of degenerate azimuthal acoustic modes, with frequency ω 0 . The same results 

apply for an axial acoustic mode. We show how the value φ0 and the slope −τ of the flame phase 

at the frequency ω 0 affects the boundary of stability, the frequency and amplitude of oscillation, and 

the phase φqp between heat release rate and acoustic pressure. This effect depends on φ0 and on the 

nondimensional number τω 0 , which can be quickly calculated. We find for example that systems with 

large values of τω 0 are more prone to oscillate, i.e. they are more likely to have larger growth rates, 

and that at very large values of τω 0 the value φ0 of the flame phase at ω 0 does not play a role in 

determining the system’s stability. Moreover for a fixed flame gain, a flame whose phase changes rapidly 

with frequency is more likely to excite an acoustic mode. 

We propose ranges for typical values of nondimensional acoustic damping rates, frequency shifts and 

growth rates based on a literature review. We study the system in the nonlinear regime by applying the 

method of averaging and of multiple scales. We show how to account in the time domain for a varying 

frequency of oscillation as a function of amplitude, and validate these results with extensive numerical 

simulations for the parameters in the proposed ranges. We show that the frequency of oscillation ω B and 

the flame phase φqp at the limit cycle match the respective values on the boundary of stability. We find 

good agreement between the model and thermoacoustic experiments, both in terms of the ratio ω B / ω 0 

and of the phase φqp , and provide an interpretation of the transition between different thermoacoustic 

states of an experiment. We discuss the effect of neglecting the component of heat release rate not in 

phase with the pressure p as assumed in previous studies. We show that this component should not 

be neglected when making a prediction of the system’s stability and amplitudes, but we present some 

evidence that it may be neglected when identifying a system that is unstable and is already oscillating 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

We first review fundamentals of thermoacoustic instabilities in

ection 1.1 and present three key questions on the subject, then

eview the existing literature in Section 1.2 , and briefly outline the

aper in Section 1.3 . 

.1. Motivation of this work 

Rayleigh [1] was the first to observe that if part of the fluctu-

ting heat release rate q is in phase with the acoustic pressure p

elf sustained acoustic oscillations can occur. Accounting also for

coustic losses [2,3] , considering the case of a single acoustically
∗ Corresponding author. 

E-mail addresses: giulio.ghirardo@ansaldoenergia.com , 

iulio.ghirardo@gmail.com (G. Ghirardo). 

n

t
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ompact flame and assuming a low Mach number flow, the crite-

ion requires that 

1 

T 

∫ t+ T 

t 

q (t) p(t) dt > acoustic losses (1) 

here T = 2 π/ω is the period of the thermoacoustic instability

nd ω its angular frequency, q and p are considered at the flame

ocation, and we assume thermodynamic equilibrium and a perfect

as. Under suitable assumptions discussed later, one can express 1 

he fluctuating heat release rate as function of the pressure p as

 = Q [ p] . For the sake of brevity, in the following we will often re-

er to q as the flame response to the pressure p , or simply as the

ame response. We assume and substitute a sinusoidal pressure
1 With the exception of the trivial cases where the flame is located at a pressure 

ode of the acoustic field at frequency ω. These cases cannot be unstable because 

he left hand side of (1) is zero. 

. 
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Nomenclature 

′ the prime denotes time derivative of the preceding 

quantity 

ˆ the hat denotes the Fourier transform of the under- 

lying quantity 

u acoustic velocity in the azimuthal direction, suitably 

nondimensionalised 

u ax acoustic velocity in the axial direction, typically 

long the axis of the burner, suitably nondimension- 

alised 

p acoustic pressure, suitably nondimensionalized 

q fluctuating heat release rate, suitably nondimen- 

sionalised, often called flame response 

Q ( A , ω ) describing function of the fluctuating heat release 

rate q = q [ p] as function of p . Defined in (3) 

n azimuthal order of the mode, e.g. n = 3 refers to the 

third azimuthal 

A j slowly varying amplitudes of oscillations, intro- 

duced in (29) 

α equivalent acoustic damping coefficient, appearing 

in (7b) 

β flame strength, i.e. the nondimensional linear flame 

response gain as function of p , as in | q | ∝ β| p | 

γ k standard deviation of the k -th time delay, see (12) , 

appearing also in Fig. 4 

δ nonlinear saturation coeff. as in (37a) 

ηj n amplitudes of the azimuthal acoustic velocity of the 

2 modes as in (8) , for j = 1 , 2 

η′ 
j 

amplitudes of the acoustic pressure of the 2 modes 

as in (8) , for j = 1 , 2 

θ azimuthal coordinate along the annular combustion 

chamber, θ ∈ [0, 2 π ) 

κ nonlinear saturation coefficient, appearing in (16) 

λ eigenvalue, λ = σ + iω, with ω in rad/s 

μ L2 norm of the mode, as defined in (11) 

ν expression for the growth rate appearing in (38) 

σ growth rate, i.e. real part of the eigenvalue λ = σ + 

iω
τ equivalent time delay of the transfer function ˆ q / ̂  p 

as introduced in (15) , i.e. minus the local slope of 

of the flame phase of such transfer function at fre- 

quencies close to ω 0 . 

−τω 0 nondimensional slope of the flame phase in the 

vicinity of the acoustic mode with frequency ω 0 

φ( ω) flame phase response, i.e. the argument of Q , as 

function of the frequency ω. We assume that it does 

not depend on the amplitude of oscillation A . This 

quantity depends on the geometry upstream of the 

flame and on the flame response. 

φ0 flame phase at the acoustic frequency ω = ω 0 , i.e. 

φ( ω 0 ) 

φqp phase between q and p of a thermoacoustic mode 

at frequency ω B , i.e. φ( ω B ) 

ϕj slowly varying phase of the j -th azimuthal mode, 

j = 1 , 2 

ϕ slowly varying phase difference ϕ 1 − ϕ 2 of the two 

azimuthal mode 

χ radial and axial shape of the azimuthal modes, χ ( r, 

z ) 

ω angular frequency, variable 

ω 0 angular acoustic frequency of oscillation when the 

flame and the damping are virtually shut off and 
n

the system becomes conservative. This is the fre- 

quency of oscillation of the acoustic mode with- 

out being excited by the flame and without being 

damped by the acoustic losses 

ω B angular thermoacoustic frequency of the system if 

the flame response gain β is virtually decreased un- 

til the system is neutrally stable, i.e. the growth rate 

σ becomes zero, solution of (27) . We prove that ω B 

is also the frequency of the limit-cycle solution if 

the flame phase does not depend on the amplitude 

and the damping losses are linear, as is the case in 

this work 

ω LC angular frequency of oscillation at the limit cycle, 

proved to match ω B 

� domain of the combustor 

p(t) = A cos (ωt) in (1) : 

1 

T 

∫ t+ T 

t 

Q [ A cos (ωt)] A cos (ωt) dt > acoustic losses (2)

e now define the describing function Q ( A, ω) of an operator Q of

 sinusoidal input at frequency ω and with an amplitude A simi-

arly to [4] : 

(A , ω ) ≡ 1 

A 

2 

T 

∫ t+ T 

t 

Q [ A cos (ω t)] e −iωt dt (3)

e multiply and divide the left hand side of (2) by 2/ A 

2 , and by

ubstituting the real part of (3) we obtain 

1 

2 

Re [ Q(A , ω )] A 

2 > acoustic losses (4)

n the left hand side, we recover the typical structure of a con-

ervative potential; for example, for a linear spring with constant

 loaded with a steady displacement A , the energy is kA 

2 /2, where

he describing function is real valued, does not depend on the am-

litude A because the spring is linear and matches the constant k .

e can rewrite the complex valued describing function in terms of

ts real valued, non-negative gain G and real valued phase response

: 

(A , ω ) = G (A , ω ) e iφ(A ,ω ) (5)

n the following we will refer for brevity to G as flame gain and to

as flame phase. By substituting (5) in (1) we obtain: 

1 

2 

G (A , ω ) cos ( φ(A , ω ) ) A 

2 > acoustic losses (6)

q. (6) allows the same interpretation of (1) , but in terms of the

ame gain G and flame phase φ of the describing function Q . We

hen review known results discussed first by [1] . We observe that

he acoustic loss term on the right hand side of (6) is positive, so

hat in order for (4) to hold we require that cos ( φ) > 0, i.e. that

π/ 2 < φ(A , ω ) < π/ 2 . Once this first necessary condition is sat-

sfied, there exists a threshold value of the gain above which (4) is

erified and a thermoacoustic oscillation ensues. 

This perspective in terms of an acoustic energy balance cor-

ectly captures the dominant feature of the thermoacoustic prob-

em as a self excited closed loop system, which in an enclosed

avity has a set of countable thermoacoustic eigenmodes. We can

nterpret the Rayleigh criterion at the frequency ω of the nonlin-

arly saturated eigenmode at a limit cycle, i.e. at the dominant fre-

uency peak of a thermoacoustically unstable experiment. We dis-

inguish ω from the eigenfrequency ω 0 of the acoustic mode of the

ombustor obtained when a passive flame is considered. We now

onsider three other scenarios, where the Rayleigh criterion does

ot allow us to conclude much. 
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1. We consider a thermoacoustic system with an acoustic mode at

frequency ω 0 , with a flame phase that in the linear regime is 2 

φ(ω 0 ) = −π . We can conclude based on the analysis above that

the system cannot pulsate at the frequency ω 0 . However, the

acoustic mode could shift to a frequency ω 0 + �ω such that the

phase φ(ω 0 + �ω) becomes favourable for the instability. Un-

der what conditions does this happen? Which nondimensional

numbers characterising the flame response govern this? 

2. We consider a given thermoacoustic system that is pulsating at

large amplitudes at a frequency ω. What would happen 

3 if —

as a pulsation mitigation strategy — we could change the flame

response so that the flame phase would be φ(ω) + π instead

of φ( ω)? Would this make the system stable without acous-

tic pulsations? Could the system instead exhibit pulsations at a

perturbed frequency of oscillation ω + �ω such that the phase

φ(ω + �ω) would still be favourable for pulsations? 

3. We consider two flames characterised by two different trans-

fer/describing functions, and predict what happens when they

are placed one at a time in a hypothetical combustor with a

given set of random (but physical) acoustic modes. Which fea-

tures of the flame transfer function are most influential at pro-

voking instability? We know already that large flame gains pro-

voke instability but wish to examine the influence of the flame

phase. 

We will refer to these three questions as the three scenarios in

he following, and we will answer them as we unfold the problem.

ll three of them show how the Rayleigh criterion (1) or (6) is not

ufficient to answer them. We will show that the missing piece

f the puzzle is the imaginary part of the flame response Im[ Q ( A,

)], which is the component of the fluctuating heat release q in

uadrature with the pressure p . We review how this component is

ell known to be responsible for shifting the frequency from the

coustic frequency ω 0 to the thermoacoustic frequency ω B in the

ext section. 

.2. Literature review 

All three scenarios can be tackled numerically for a specific

ombustor and flame response. In particular all the questions can

e made more specific and quantitatively answered. We first dis-

uss the methods, and review the results in the next paragraph.

ne can calculate the stability of a thermoacoustic system by cou-

ling the acoustic field with the flame response and study the sys-

em both in the linear and nonlinear regime with respect to the

mplitude of pulsation. See e.g. [5–7] for a finite element approach

n the frequency domain, [8] in the time domain. Low order mod-

ls can be analyzed in the frequency domain [9–13] and both in

he frequency and time domain [14–17] . These stability analyses al-

ow the prediction of the frequencies and amplitudes of oscillation

or a specific system [18] , can account for subcritical bifurcations

19] and can be extended to quasi-periodic solutions [20] . However

ecause the whole system behaviour depends first of all on the set

f eigenmodes and eigenfrequencies of the system, which are spe-

ific to the geometry, it is hard to isolate the effect of the flame

esponse on the system’s stability when all the modes are consid-

red. In particular when one changes the flame response, a new

coustic mode may be excited, or a competition of closely spaced

igenmodes can be observed. To isolate the effect of the flame re-

ponse we focus here on one mode only or similarly on a couple

f degenerate azimuthal modes. 
2 For the sake of the examples we make the reasonable assumption that the gain 

aturates smoothly with amplitude, i.e. that the Hopf bifurcation is supercritical. 
3 For the sake of the example we assume that no other thermoacoustic mode 

ould be excited when φ is changed, and that φ does not depend on amplitude, as 

iscussed later in Section 2.1. 

m  

c  

b

 

s  

[

Lang et al. [21] study a duct with a n − τ compact flame model

ith a wave-based approach, in terms of a linear dispersion re-

ation. For n = 0 they calculate the acoustic frequency ω 0 of the

ystem when the flame response is analytically switched off in the

quations. They then apply a Maclaurin series truncated to the first

rder in the interaction index n to the dispersion relation to ob-

ain an approximation of the thermoacoustic frequency ω in terms

f the unperturbed frequency ω 0 . Lang et al. [21] says: When [the

ame response is absent] the perturbation vanishes and the angular

requency is identical to one of the resonant frequencies of the duct .

imilarly also [22, Eq. (50), Fig. 5] do not study the nondimensional

umbers governing the system’s stability, and present an approx-

mate solution of the boundary of stability that does not account

or the fact that the frequency of oscillation shifts from ω 0 . Dowl-

ng and Stow [23, Fig. 2, Eq. (21)] carry out a numerical sensitivity

tudy of a n − τ model in a one dimensional duct, in terms of nor-

alized frequency shifts and growth rates. The results are correct

n a qualitative level, but the model does not account for damp-

ng losses, and the sensitivity is restricted to a small range of τ
nd for rather small levels of heat release rate response. Schuller

t al. [24] also consider a n − τ model applied on the Helmholtz

ode of one experiment. They assume that the frequency of os-

illation is known, and apply the Rayleigh criterion to distinguish

table and unstable cases. A model similar to [24] is used by Mejia

t al. [25] to predict growth rates and frequencies of oscillation of

ne experiment at different operating conditions. 

Although not written with this terminology, [21–23] show that

he imaginary part Im[ Q ( A, ω)] of the flame describing function

the part of the flame response that is in quadrature with the

coustic pressure p – is responsible for a frequency shift of the

ystem from the acoustic frequency ω 0 to the thermoacoustic fre-

uency ω B . They show that the phase of the flame response intro-

uced in (5) can make the system stable or unstable, as one can

onclude from (6) . This is for example apparent in [24, Fig. 10] , and

n [24, Eq. (11)] where also acoustic losses are accounted for. They

lso typically consider the sensitivity of frequency and growth rate

n the delay τ , see e.g. [23, Fig. 2] , as is customary of many other

tudies, e.g. [7,8,26–29] . The change of the delay affects at the

ame time the value and the slope of the flame phase at a cer-

ain frequency ω 0 . It is then hard to pinpoint separately the role of

he phase value and the role of the phase slope, which is one of

he outcomes of this work. 

We review in Table 1 selected references from the literature

hat discuss growth rates, damping rates and frequency shifts.

hese numbers allow us to quantify how weakly perturbed the

hermoacoustic system is, i.e. how weakly the flame response and

he acoustic losses are perturbing the acoustics of the problem. We

bserve that the thermoacoustic frequency ω B can shift from ω 0 

or approximately 10% of the value of ω 0 , and that the nondimen-

ional growth rate | σ / ω| is typically smaller than 0.1. Regarding the

rst column, we point out that strongly damped acoustic modes

re not of interest in the applications because they tend to be very

table. 

.3. Outline 

Our starting point is the work of Schuermans et al. [47] and

oiray et al. [48] , who neglect the part of the flame response q

hat is not in phase with the acoustic pressure p , i.e. they consider

nly the real part of the transfer function Re[ Q ( A, ω)]. We instead

aintain the complex transfer function Q ( A , ω ) so that we can dis-

uss the role of the phase of this transfer function on the stability

oundaries and on the nonlinear saturation of the system. 

We limit the study to the more common case of a limit cycle

olution, excluding for example quasi-periodic [20,49] and chaotic

50–52] solutions that are beyond the limits of the model. We 
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Table 1 

List of values of damping/growth rates and frequency shifts from the literature. The references regard experiments or models tuned in some way to experimental data. This 

includes for example calculations with flame transfer functions evaluated with LES, thermoacoustic models tuned to experimental data or that use measured reflection 

coefficients, etc.. In this manuscript the eigenvalue is λ = σ + iω, where f = ω/ 2 π is the frequency in Hz and σ is the growth rate. The acoustic frequency of oscillation is 

ω 0 , and the thermoacoustic frequency of oscillation is ω B . In each reference we collect the largest negative growth rates for the first column, largest positive growth rate 

for the second, and largest positive and negative shift from unity for the third column. This allows us later to discuss the boundaries of these parameters, rather than their 

common values. For the calculation of σ / ω 0 the approximation ω B ≈ω 0 was made in the cases where ω 0 is not available. 

wo. flame σ / ω 0 w. flame σ / ω 0 ω B / ω 0 Reference and brief description 

1.114 From Bloxsidge et al. [2] , experiment. Freq. shift observed when the controller is switched on from an 

unstable point, stabilising the system 

−0.128 From Moeck et al. [19, Table 1] , experiment 

−0.052 

−0.026 

0.039 0.968 From Noiray et al. [30, Fig. 8] experiment. Comparison between zero ampl. and LC ampl. See also Fig. 11 

0.862 From Noiray et al. [30, Fig. 9] , experiment. Comparison between lin. unstable point LC and lin. stable LC 

(triggering) 

−0.011 1.001 From Gullaud et al. [31, table 3] , estimated damping of perforated plates 

−0.055 1.012 

0.025 From Bothien et al. [32, Fig. 12] , experiment 

0.125 0.902 From Nicoud [33, Fig. 13] , Helmholtz solver with FTF from LES 

−0.232 

0.870 From Boudy et al. [34, Fig. 4, 5] , experiment 

1.060 

1.500 We treat this value as an outlier and discard it 

0.880 

0.072 From Boudy et al. [35, Fig. 4, 7, mode 2] , experiment 

−0.021 From Boudy et al. [35, page 1126] , experiment 

1.044 From Palies et al. [36, Fig. 8, bottom left] , experiment 

0.836 From Palies et al. [36, Fig. 9, bottom right] , experiment 

0.872 From Salas [37, Fig. 6.13, page 178] , 

−0.046 0.956 Helmholtz solver with a FTF extracted from LES 

0.920 

−0.009 From Schwing et al. [38, at cold conditions] , experiment 

0.023 From Bothien et al. [39, Fig. 8, without dampers] , annular heavy duty gas turbine 

−0.039 From Bothien et al. [39, Fig. 8, growth rate reduction with dampers] 

0.047 0.958 From Silva et al. [40, Fig. 6] , Helmholtz solver/experiment, 

1.051 with flame, varying the time delay 

−0.109 0.239 1.071 From Silva et al. [40, Fig. 8, 9, mode C08, flame A] , Helmholtz solver/experiment. See also [36] 

−0.014 From Wagner et al. [41, Fig. 13, 14] , experiment 

−0.061 From Stadlmair et al. [42, Fig. 5] , experiment 

−0.032 very common value in this reference 

−0.011 From Stadlmair et al. [42, Table 2] 

−0.012 

0.019 From Bothien et al. [43 , Fig. 12, � T /T = 2 %], annular industrial gas turbine 

0.96 From Bothien et al. [43 , Fig. 12, � T /T = 4 %] 

1.05 

−0.010 From Bothien et al. [43, Fig. 9, growth rate reduction due to dampers] 

−0.062 From Mejia et al. [25, Table 3, NR] , experiment 

−0.047 From Mejia et al. [25, Table 4, NR] 

−0.067 From Mejia et al. [25, Table 6, NR] 

−0.050 From Ghirardo et al. [44] . Damping of the dominant frequency of the model.Reported by the authors, not 

in the paper 

−0.026 0.011 From Boujo et al. [45, Fig. 6] , experiment 

0.011 From Noiray & Denisov [46, condition c3] , experiment 
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also neglect the study of intrinsic thermoacoustic modes [53,54] .

An important result of this work is that most results obtained on

the linear boundary of stability are then also valid in the nonlin-

ear regime at the limit cycle solution, allowing the practical usage

of the results on self-excited thermoacoustic oscillations, under a

set of assumptions regarding the flame response that are typically

respected, discussed in Section 2.1 . 

The manuscript is organised as follows. In Section 2 we briefly

characterise the problem, with a focus on the flame model. In

Section 3 we carry out the linear analysis, and discuss the bound-

ary of stability of the system. In Section 4 we extend the linear

results to the nonlinear regime. We apply two analytical nonlin-

ear methods to predict amplitudes and frequencies of the limit

cycles. We validate them with extensive numerical simulations in

the whole range of parameters explored. Results apply both to az-

imuthal and axial modes, and are discussed for azimuthal modes

first and then extended to axial modes in Sections 2.3 and 4.5 . In

Section 5 we discuss some implications of neglecting the part of
eat release rate not in phase with the pressure when identifying

inear growth rates of a system. Finally in Section 6 we draw the

onclusions. 

. Brief derivation of the model 

Low-order models of azimuthal instabilities usually describe the

ystem as a damped wave equation, with the fluctuating heat re-

ease rate q as a source term. The nondimensional equations are

48,55] : 

∂u 

∂t 
+ ∇p = 0 (7a)

∂ p 

∂t 
+ ∇u = q − αp (7b)

In (7) α is a positive damping coefficient, p ( t, θ ) is the fluctuat-

ng pressure, u ( t, θ ) is the fluctuating velocity in the azimuthal di-

ection, with θ being the azimuthal angle in the periodic domain
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a  

4 Sequence of local maxima and minima alternating along the frequency axis. 
5 This is the case of most cases of interest. The flame phase can sometimes in- 

crease, usually in small ranges of frequencies in which the gain is low. 
0 , 2 π ). The damping is modelled as linear because it is usually

inear with respect to the amplitude, see e.g. [56] , but one can ac-

ount for an amplitude dependence, as discussed e.g. by Schuller

t al. [57] for the losses at the boundaries. We focus on a rotation-

lly symmetric system in the azimuthal direction θ , i.e. we assume

hat u, p, q do not have any direct dependence on θ . A discussion

f the effect of a discrete rotation group of symmetry, instead of

ull rotational symmetry, can be found in [44] . The discussion of

he case covering the loss of degeneracy of the couple of eigen-

odes is beyond the scope of this manuscript. This can occur for

any reasons, e.g. a non uniform flame [48,58] or damping [39] re-

ponse or a non-zero mean azimuthal velocity [59,60] . 

We approximate the solution of (7) with a superposition of

he two excited degenerate thermoacoustic modes, which at the

ames’ positions have shapes cos ( n θ ) χ ( r, z ) and sin ( n θ ) χ ( r, z ), in

 cylindrical coordinate system { r, z, θ} with the z axis as the axis

f rotational symmetry of the combustor. We fix arbitrarily the

alue of the mode χ at the burners’ radial and axial location to

. At these { r, z } coordinates the acoustic azimuthal velocity and

ressure have the expressions 

 (t, θ ) ≈ nη1 (t) sin (nθ ) − nη2 (t) cos (nθ ) (8a) 

p(t, θ ) ≈ η′ 
1 (t) cos (nθ ) + η′ 

2 (t) sin (nθ ) (8b) 

here here and in the following the prime denotes a time deriva-

ive and n is the azimuthal wavenumber of the mode we are study-

ng. By substituting (8) into (7) and by projecting the equations on

he two modes we obtain [44] : 

′′ 
1 (t) + ω 

2 
0 η1 (t) = 〈 q 〉 cos (t) − αη′ 

1 (t) (9a) 

′′ 
2 (t) + ω 

2 
0 η2 (t) = 〈 q 〉 sin (t) − αη′ 

2 (t) (9b) 

here we introduce the spatial averaging operator for the generic

unction m ( θ ) as 

 q 〉 m 

(t) = 

1 

πμ

∫ 2 π

0 

q (θ, t) m (θ ) dθ, (10) 

e introduced α = α/μ, and μ is the Euclidean norm of the eigen-

ode, defined as 

= 

∫ 
�

| χ(r, z) | 2 cos (nθ ) 2 d� (11) 

.1. Flame model 

We neglect the effect of the transverse acoustic field on the the

uctuating heat release rate q coming from the flame, as studied

reviously by Ghirardo and Juniper [55] , and assume that q de-

ends only on the longitudinal acoustic field in the mean flow field

irection. This is a good approximation in the linear regime if one

ssumes axisymmetric flames [61] , but not as much in the non-

inear regime at high amplitudes of acoustic transverse velocity, as

easured experimentally by Saurabh et al. [62,63] for a swirl sta-

ilised turbulent flame. We also do not study the general case of

 discrete number of flames, each modelled in terms of a generic

ame describing function as carried out by Ghirardo et al. [44] .

nstead, we assume that the number of burners is large enough

hat the flame model q [ p ] is homogeneous in the azimuthal di-

ection, and the nonlinearity consists of a fundamental cubic sat-

ration. We then model q as a nonlinear, time-invariant opera-

or of the acoustic axial fluctuating velocity u ax at the flame in-

et. The reasoning behind this is that an acoustic fluctuation of

he longitudinal velocity at the burner induces a perturbation of
he fuel/air mixture fraction [64–67] . The local flow field perturba-

ion can also be amplified by flow instabilities (see e.g. [68–70] for

aminar flames) and/or modulates the swirl in swirling flames [71] ,

nd both mechanisms lead to perturbations of the flame response

72,73] . For a review of these and other mechanisms, refer to

74,75] . The resulting transfer function typically involves a set of

ime delays τ k , of standard deviations γ 2 
k 

, and interaction indices

 k , all real valued quantities: 

ˆ q (ω) 

ˆ u ax (ω) 
= 

∑ 

k 

±n k e 
−iωτk e −γ 2 

k 
ω 2 (12) 

he structure of this transfer function holds also for turbulent

ames, see e.g. [56,71,73,76] . The fluctuating axial velocity u ax can

e expressed as a linear transfer function of the pressure p in the

nnular chamber, as long as only one mode, or two degenerate

odes, oscillate, as discussed in detail in [44] . In particular one

an write 

ˆ u ax (ω) 

ˆ p (ω) 
= A 

n (ω) = β∗(ω) e iξ (ω) (13) 

here A 

n ( ω) is the admittance of the whole part of the com-

ustor upstream of the section where u ax is measured, calculated

or the n -th azimuthal instability. This admittance depends on the

pstream geometry and boundary conditions and on the burner

ransfer matrix. From (12) and (13) it follows that 

ˆ q (ω) 

ˆ p (ω) 
= β∗(ω) e iξ (ω) 

N k ∑ 

k =1 

±n k e 
−iωτk e −γ 2 

k 
ω 2 (14) 

espite the quite complicated expression of (14) , this transfer func-

ion typically exhibits a gain with a certain number of bumps 4 as

unction of the frequency, and a phase that decreases with fre-

uency 5 . This holds both in the linear and nonlinear regime, see

.g. [30] for a matrix burner and [77] for a swirl burner. This

eans that in the neighbourhood of the acoustic frequency ω 0 of

he azimuthal mode of interest (14) can be simplified to: 

ˆ q (ω) 

ˆ p (ω) 
= βe iφ(ω) (15a) 

(ω) = φ0 − τ (ω − ω 0 ) with φ0 ∈ [ −π, π) (15b) 

here τ is an equivalent time delay and describes the local slope

f the flame phase close to ω 0 , i.e. τ ≡ −∂φ(ω = ω 0 ) /∂ω and φ0 

s the value of the flame phase for ω = ω 0 . A sketch of the flame

hase φ( ω) and of the linear approximation in the vicinity of ω 0 

s presented in Fig. 1 . In (15) we also choose a constant real val-

ed gain β with frequency because in the general case there is

o established trend, i.e. the gain can either grow or decay with

requency due to the bumps mentioned earlier. We introduce the

uantity ψ ≡ φ0 + τω 0 and observe that if we set it to zero the red

ashed line in Fig. 1 passes through the origin. This means that the

xponential in (15) becomes exp (−iωτ ) and we can write in the

ime domain that q = βp(t − τ ) . In the following we first simplify

he discussion by setting ψ = 0 and generalise the results later for

 � = 0. This simplification allows us to interpret −τω as the phase

etween ˆ q and ˆ p . 

In the time domain and in the nonlinear regime, we can write 

 (t) = βp(t − τ ) − κ p(t − τ ) 3 (16) 

n (16) κ is a positive valued constant describing how fast with

mplitude the flame response saturates. Applying the definition



170 G. Ghirardo et al. / Combustion and Flame 187 (2018) 165–184 

Fig. 1. Flame phase, i.e. phase of ˆ q (ω) / ̂ p (ω) . In the vicinity of the frequency ω 0 

of the acoustic mode we approximate the phase response φ( ω) (black line) with 

a straight line (red dashed line). The value of the phase at ω 0 is φ0 ≡φ( ω 0 ). We 

define the equivalent time delay τ as minus the local slope of the phase in ω 0 . 

The results are obtained first for the case of ψ = 0 , for which the model becomes 

q = p(t − τ ) , and generalised later. The frequency of the thermoacoustic system can 

shift from ω 0 to the frequency ω B such that the phase φqp between the fluctuating 

heat release rate q and the acoustic pressure p is more favourable. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article). 
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(3) on q [ p ] from (16) we obtain the describing function Q : 

Q(A , ω ) = 

(
β − 3 

4 

κA 

2 
)

e −iωτ (17)

where the first factor is the gain G ( A ) of the describing function.

We are making two key assumptions in ( 16 ) and ( 17 ). The first re-

gards the chosen cubic saturation, which is fundamental and sim-

ple as discussed by Noiray et al. [48] , and features a monotonic

decrease of the gain G ( A ) with the amplitude A , which is usually

the case. The effect of a non monotonic decrease of the flame gain

with the amplitude [78] on the system’s stability is well under-

stood in the literature, see e.g. [19,79] for axial instabilities and

[44,80] for azimuthal instabilities. 

The second regards the delay τ that is assumed to be constant

in the linear and nonlinear regime, so that the phase response φ
does not depend on the amplitude A . The phase dependence with

amplitude is usually weak, see [ 81; 82; 56 , Fig. 12; 71 , in the con-

clusions], and is a less common mechanism of saturation to limit

cycles, with a few notable exceptions, see e.g. the matrix burner

at EM2C [ 13 , Fig. 11 above 900 Hz]. Saturation of a thermoacous-

tic system to a limit cycle is usually governed by the drop of the

flame gain | Q ( A, ω)| with amplitude. We also constrain the phase

to not depend on amplitude to investigate specifically the effect of

the slope τ of the phase response as introduced in (15) . This will

also allow us to compare the model with a successful low order

model that exists already [83,84] , which has been used to identify

growth rates in real system. 

2.2. Model equations 

By substituting (16) into (9) we obtain 

η′′ 
1 (t) + ω 

2 
0 η1 (t) = f (η′ 

1 (t) , η′ 
1 (t − τ ) , η′ 

2 (t − τ )) (18a)

η′′ 
2 (t) + ω 

2 
0 η2 (t) = f (η′ 

2 (t) , η′ 
2 (t − τ ) , η′ 

1 (t − τ )) (18b)

where the function f is defined as: 

f (a, a τ , b τ ) ≡ a τ

[ 
β − 3 

4 

κ
(
a 2 τ + b 2 τ

)] 
− αa (19)

where we denote with a subscript τ a delayed quantity, e.g.

a τ (t) = a (t − τ ) . An example of a time domain simulation of the

oscillators (18) is presented in Fig. 2 , where in a) the continuous

thin lines are the fast oscillating signals η ( t ) and η ( t ), and the
1 2 
hick lines are their slowly varying amplitudes of oscillation A 1 ( t )

nd A 2 ( t ). In Fig. 2 b we present the instantaneous frequency of os-

illation of the same simulation with a black line. To link this study

ith the existing literature, we remark that one can take the time

erivative of (18) and obtain: 

′′ 
1 (t) + ω 

2 
0 ζ1 (t) = 

∂ 

∂t 
f (ζ1 (t) , ζ1 (t − τ ) , ζ2 (t − τ )) (20a)

′′ 
2 (t) + ω 

2 
0 ζ2 (t) = 

∂ 

∂t 
f (ζ2 (t) , ζ2 (t − τ ) , ζ1 (t − τ )) (20b)

here the function ζ j (t) ≡ η′ 
j 
(t) was introduced. By setting τ to

ero in (20) one recovers the equations discussed in [48] . One dis-

dvantage of the second formulation (20) of the problem is the ad-

itional time-derivative of the function f that includes the heat re-

ease rate and leads to the study of the problem with mixed terms
k 
j 
(t) ζ ′ 

j 
(t) in the equations. 

We mention that any stochastic contribution q s ( t ) to the heat

elease rate appears on the right hand sides of (18) after spatial

veraging, and hence should appear in (20) as a time derivative,

nd not outside of the time derivative as presented in [85] . We

tick to the formulation in terms of equations (18) in the following.

.3. The case of an axial mode 

When carrying out the projection of the equations (7) on a sin-

le mode η1 one obtains 

′′ 
1 (t)+ ω 

2 
0 η1 (t) = f (η′ 

1 (t) , η′ 
1 (t − τ )) , 

with f (a, a τ ) = a τ (β − κa 2 τ ) − αa (21)

ote that the definition of μ for an axial mode stays the same,

ut since the mode does not depend on the azimuthal component

11) becomes 

= 

∫ 
�

| χ(r, z) | 2 d� (22)

esults of Sections 3 and 4 apply for axial modes too. We

ill discuss in particular the case of an axial mode later in

ections 4.5 and in 5 . 

.4. Range of the parameters { α, β , τω 0 } 

In this manuscript all the analytical expressions are valid for

 β, α} ∈ R 

+ 2 and τ ∈ R unless otherwise indicated. It is however

mportant to estimate the range of typical values of these parame-

ers in thermoacoustics. 

Based on the first column of Table 1 we consider as typical a

hermoacoustic system with a level of acoustic damping such that

he negative nondimensional growth rate σ / ω 0 equals −0 . 04 when

he flame response is shut off. We then consider the case of a zero

ime delay τ , for which the growth rate of the system is (β − α) / 2

s discussed in [48] . When the flame response is shut off, i.e. β =
 , we obtain the value of the nondimensional acoustic damping

oefficient α/ω 0 = 0 . 08 , which we keep fixed in the following. We

ill reconsider the role of α/ ω 0 in Section 3.4 . 

Based on the relative values of the first two columns of Table 1 ,

e consider a strongly unstable system to have a positive, lin-

ar nondimensional growth rate σ / ω equal to 0.08 when both

amping and flame act on the acoustic field. This leads to a ra-

io β/ω 0 = 0 . 12 , and a ratio β/α = 3 . We then decide to study in

he following the system for β/ α ∈ [1 , 3], where values of β smaller

han 1 will be found to be trivially stable in the next section. 

For estimating the range for τω 0 , we consider an example of a

hermoacoustic mode at f = 300 Hz, subject to a convective time

elay of τ = 5 ms. For example we will later discuss one thermoa-

oustic mode at f ≈ 10 0 0 Hz of [34] , for which τω = 3 π based
0 0 
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Fig. 2. a) Example of time domain simulation of the two azimuthal modes η1 and η2 of an annular combustor chamber. The fast oscillating pressure values ηj ( t ) are obtained 

by integrating the original system of equations (18) (continuous lines), while the slowly varying amplitudes of oscillation A j are obtained with the method of multiple scales 

(MMS, dashed lines) and alternatively with the averaging method (AVG, dotted lines). In this case we choose τω 0 = π/ 8 � = 0 and this leads to a non-trivial response: the two 

amplitudes A j undergo a non-monotonic transient where A 1 overshoots the final amplitude and A 2 grows more slowly than A 1 . b) Dependence of the frequency of oscillation 

on time: ω is the calculated instantaneous frequency of oscillation extracted from the modes ηj , while ω AVG and ω MMS are the predicted instantaneous frequencies using the 

method of multiple scales (MMS) and the averaging method (AVG). In a) and b) both nonlinear methods have both good accuracy in predicting the slowly varying amplitudes 

and the instantaneous frequency. 
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n their Fig. 7 . This leads to a product of τω 0 ≈ 3 π . Note more-

ver that the superposition of different time delays often leads to

 steeper flame phase in certain frequency ranges. In these ranges,

he equivalent time delay τω 0 discussed just after (15) would

e even larger. Accounting for longer time delays and larger fre-

uencies of oscillation, in the following we study the system for

ω 0 ∈ [0 , 8 π ]. To summarise, we investigate: 

β/α ∈ [1 , 3] 
τω 0 ∈ [0 , 8 π ] 

for α/ω 0 = 0 . 08 (23) 

nd we will reconsider the role of the level of acoustic damping

/ ω 0 in Section 3.4 . 

. Linear analysis 

We first tackle in Section 3.1 the case where in Fig. 1 the re-

ponse ψ at zero frequency is zero, and then generalise the results

n Section 3.2 to ψ � = 0. 

.1. Simplified case with ψ ≡ φ0 + τω 0 = 0 

In this section we study the boundary of linear stability of (18) .

e proceed by retaining only the linear terms in (18a) and (18b) ,

nd obtain: 

′′ 
j (t) + αη′ 

j (t) − βη′ 
j (t − τ ) + ω 

2 
0 η j (t) = 0 j = 1 , 2 (24) 
b  
e observe that in the linear regime the equations for the az-

muthal and axial modes match, so that the analysis of (24) car-

ied out in this section applies to both cases. We substitute

1 (t) = e (σ+ iω) t into (24) where σ is the growth rate and ω the

eal valued angular frequency of oscillation, and obtain the charac-

eristic equation. We then split the equation into real and imagi-

ary parts and after some manipulation obtain: 

β cos (τω) e −στ − α

2 

= σ

[
1 + 

βτ

2 

sinc (τω) e −στ

]
(25a) 

 

2 − ω 

2 
0 + βω sin (τω) e −στ = σ 2 + ασ − βσ cos (τω) e −στ

(25b) 

We study for which parameters { α, β, τ } ∈ R 

+ 3 the system is

eutrally stable, i.e. there exist real-valued solutions ω B of the sys-

em of equations (25) when setting the growth rate σ to zero: 

cos ( τω B ) − α = 0 (26a) 

 

2 
B − ω 

2 
0 + βω B sin ( τω B ) = 0 (26b) 

In (26) , we call ω B the thermoacoustic frequency of the system,

s opposed to ω 0 that is the acoustic frequency, where the sub-

cript refers to the fact that it is calculated on the boundary of sta-

ility. We observe that the left hand side of (26a) is the difference
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Fig. 3. Results for the simplified case with ψ = 0 in Fig. 1 . Linear stability analysis of axial and azimuthal thermoacoustic modes characterised by a natural frequency of 

oscillation ω 0 , and a flame response q [ p] = βp(t − τ ) . a) Boundary of neutral stability as function of the local slope τω 0 of the flame phase. The coloured line is the ratio of 

the linear driving β over the acoustic damping α to make the system neutrally stable. The linearly unstable region is filled in grey. b) The coloured line is the frequency of 

neutral stability ω B / ω 0 on the boundary described in a). In both frames the black line is the simpler solution obtained neglecting the part of the heat release rate q not in 

phase with the pressure p as assumed in [47,48] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω  

t

 

e  

s  

f  

f  

t  

f

 

o  

t  

s  

d  

o  

fl  

s  

o  

a  

t  

[  

t  

f

6 Crawford and Lieuwen [86] study only axial modes, for which case it is more 

straightforward to study q as function of the acoustic velocity instead of the acous- 

tic pressure, as [86] do. This leads to a different delay definition. Their Figs. 6 

and 7 should be compared for ɛ v < 0, where −ε v plays the same role of β of this 

manuscript. 
between the real part of the transfer function Q(A = 0 , ω B ) mi-

nus the gain α of the acoustic losses, both projected on the mode

shape as discussed just after (9) . This conveys the same informa-

tion as the Rayleigh criterion (6) , but with an equal sign since we

are looking for the boundary of neutral stability. 

Eq. (26b) is the key ingredient that was missing in the introduc-

tion to quantify how a thermoacoustic eigenmode can shift its fre-

quency of oscillation due to the flame response. It resembles (21)

of [23] as discussed in the introduction. In particular the last term

on the left hand side is ω B Im [ Q(A = 0 , ω )] , i.e. ω B times the imag-

inary part of the describing function calculated at zero amplitude.

This terms act as a perturbation in the equation, in the way that

ω B deviates from ω 0 as this term increases. In particular this fre-

quency shift from ω 0 to ω B is zero if the phase is zero or a mul-

tiple of 2 π , as expected. We carry out with rigour the analysis of

the implicit dispersion relation ω B = ω B (β/α, τω 0 ) in Appendix A ,

but we mention here that the frequency ω B at the boundary of

stability is calculated as the root of 

h (τ, ω B ) ≡ ω 

2 
B − ω 

2 
0 + αω B tan (τω B ) = 0 (27)

We present in Fig. 3 a the stability map of the system, where

the ranges of the horizontal and vertical axes are representative of

a class of thermoacoustic systems as discussed in Section 2.4 . The

boundary of stability is reported with a coloured line as a function

of the nondimensional slope τω 0 introduced in (15) , where ω 0 is

the natural acoustic frequency of the system and τ is the slope of

the flame phase close to ω 0 . Above this boundary of stability the

system is linearly unstable and the region is coloured with grey.

The colour of the boundary is the linear frequency of oscillation
 B / ω 0 of the system and the respective colourmap is reported on

he right. 

Where τω 0 is a multiple of 2 π we have that ω = ω 0 and q is

xactly in phase with p , and the required ratio β/ α to render the

ystem neutrally stable equals unity and is minimum, as expected

rom the Rayleigh criterion. As the value of τω 0 gets farther away

rom a multiple of 2 π , the strength of the flame response required

o de-stabilise the system increases, and the curve β/ α takes the

orm of a trough with the minimum at each multiple of 2 π . 

Moreover, the width of the troughs increases with the multiples

f 2 π , so that the boundary of stability approaches the horizon-

al asymptote β/α = 1 as τω 0 → ∞ . This means that for a given

ystem with a fixed ratio of β/ α, flames governed by large time

elays, i.e. equivalently flames with a steep phase in the vicinity

f the acoustic frequency ω 0 , are more likely to be unstable than

ames governed by smaller time delays, and the overall system’s

tability is less affected by the flame phase close to the frequency

f oscillation. In other words, for a fixed flame gain, a flame with

 steeper phase is more likely to excite an acoustic mode, because

he troughs in Fig. 3 a are wider. These results compare well with

86, Figs. 6 and 7] , who plot one over the expected mean value of

he amplitude of oscillation, for a a similar 6 set of linear equations

orced with gaussian additive white noise. 
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Fig. 4. Growth rate of the mode at frequency ω 0 /2 π ≈ 100 Hz as a function of the 

convective mean delay τ and of the standard deviation γ of the time delays for the 

specific combustor studied by Bothien et al. [26] . This result was obtained with a 

stability analysis that accounts for all modes and by approximating the time delay 

τ with a Pade approximation. Large values of standard deviation γ lead to small 

values of the ratio β/ α in Fig. 3 , so that the two vertical axes here and in Fig. 3 are 

reversed when comparing them. The border of stability presented with the thick 

line follows the same trend of the border of stability of Fig. 3 . This showcases the 

validity of projecting the equations on one thermoacoustic mode only as applied in 

this manuscript. Readapted from [26] . 
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Figure 3 b presents the same information as Fig. 3 a but swap-

ing the vertical axis with the colourmap. In Fig. 3 b, where τω 0 is

 multiple of 2 π , the frequency ω B matches the natural frequency

f oscillation ω 0 . For values of the time delay τω 0 < π /2 the linear

requency of oscillation ω B is smaller than the natural frequency

f oscillation ω 0 . We observe that for values of β/ α < 3 we can see

 linear frequency shift of up to about 10% even for small values

f τω 0 . This is in line with the experimental findings reviewed in

he introduction. This will be confirmed in Section 4 also in the

onlinear regime, and shows how assuming that the frequency of

scillation of the system matches the natural frequency of oscilla-

ion ω 0 is a rough approximation. 

Figure 3 generalises the linear results observed in [26] for a

pecific combustor and flame, where a parametric study of the lin-

ar growth rate as function of the delay is presented in their Fig.

, reproduced here in Fig. 4 . In particular the contour lines of the

rowth rate in that figure follow the same pattern presented in

ig. 3 . This shows how the assumption of studying one acoustic

ode leads to results that are in good agreement with numerical

nalyses where all modes are considered. 

In the same Fig. 3 a and 3 b we present with black lines the re-

ult obtained neglecting the part of heat release rate out of phase

ith the pressure, as assumed in [47,48] , so that one can compare

he results with and without this assumption. The derivation is in

ection A.1 . In Fig. 3 a we observe that the black troughs are ex-

ctly the same and simply shifted by 2 π on the horizontal axis

ω 0 , so that the error on the boundary of instability increases for

arger values of τω 0 . As expected, in Fig. 3 b we show how the pre-

icted frequency of oscillation matches ω 0 at all linearly unstable

onditions. 

.2. Generalisation to ψ ≡ φ0 + τω 0 � = 0 

In Fig. 5 we present the results for the more general flame re-

ponse presented in Fig. 1 . In particular the vertical and horizontal

xis of Fig. 5 are the flame phase and the nondimensional flame

hase slope of Fig. 1 . We refer the reader to Section A.2 for how

hese results are obtained from the results of Fig. 3 . We observe

hat for a fixed ratio β/ α depicted by respective pairs of red lines,

he system is unstable and pulsates if the point ( τω , φ ) is be-
0 0 
ween the two red straight lines, and does not pulsate otherwise.

he frequency of oscillation ω B at the boundary of stability is pre-

ented with the colourbar. We will prove in Section 4.2 that the

requency ω B matches the frequency at the limit cycle, so that

he colourbar of Fig. 5 a applies also to the limit cycle solutions.

or a constant nondimensional flame phase slope τω 0 , the most

avourable value of the phase φ0 to make the system pulsate is

ero, which is the case where the thermoacoustic frequency ω B 

atches the acoustic frequency ω 0 . If within a period of oscil-

ation the fluctuating heat release rate comes later in time than

he acoustic pressure, φ0 is negative and the thermoacoustic fre-

uency ω B is be lower than the acoustic frequency ω 0 , i.e. in the

ig. ω B / ω 0 < 1. If instead the fluctuating heat release rate occurs

efore the acoustic pressure, φ0 is positive and ω B is larger than

 0 . For the limit case of β/α = 1 the unstable region shrinks to

he line φ0 = 0 , which requires that the phase between pressure

nd heat release rate is exactly zero. 

We now discuss the first scenario introduced in the introduc-

ion, where the flame phase φ0 is −π . The term on the left hand

ide in the Rayleigh criterion (6) is negative at ω 0 and one is then

empted to conclude that the acoustic mode will be stable and pul-

ations will not be observed. In Fig. 5 a we then focus on the line

0 = −π, and we want to determine whether the system pulsates

r not. We observe that for τω 0 � 5 π the point is always in the

hite region and the system will not pulsate. However for larger

alues of τω 0 the system will pulsate if it falls between the two

ed lines for a given ratio of β/ α. We can then conclude that the

ystem will be unstable if the slope of the phase response is suffi-

iently steep and the flame gain is sufficiently steep. This can be

ntuitively understood by the fact that if the flame has a steep

hase at the resonance frequency ω 0 , even a little shift of the fre-

uency from ω 0 can lead to a variation of the phase between q

nd p sufficient to obtain a phase φqp between heat release rate

nd acoustic pressure that is favourable to pulsations. This can be

onfirmed by looking at Fig. 5 b, where we present the phase φqp .

ne can observe that along horizontal lines larger values of τω 0 

ead to a value of the phase φqp closer to zero, i.e. more favourable

or pulsations. 

We can similarly also address the second scenario, which con-

iders a thermoacoustic system that is already pulsating, to whose

ame phase π is added. In Fig. 5 a this corresponds to moving the

oint vertically by π . If the point moves to the white region the

ddition of π makes the system stable. Similarly to the previous

esult, this is more likely to happen on the left part of the figure,

.e. with flames with non steep phase responses, and secondarily if

he ratio β/ α is small. 

One observes how for quite a small value of β/α = 1 . 5 and

or not steep flame phases τω 0 ≈ 0 the range of the phase φ0 at

hich the system is unstable is already quite broad, approximately

 −π/ 4 , π/ 4] . If τω 0 is increased, the unstable range for φ0 lead-

ng to pulsations becomes larger, and is one of the novel results

f this paper. The same applies if the ratio β/ α of the strengths

f flame response and acoustic damping increases, consistent with

he literature that higher flame gains lead to larger unstable re-

ions. This allows us to partially discuss the third scenario. We find

hat the actual value of the phase φ of the flame transfer func-

ion is not a feature strongly linked with the risk of an unstable

ombustor if the slope of the phase is steep, and secondarily if

he flame gain is very large. This means that if the flame phase

s sufficiently steep and/or the flame strength β sufficiently strong,

he system will pulsate regardless of the flame phase φ( ω). More-

ver when comparing two flames with the same gain, the one with

teepest phase has a higher pulsation risk. However, one should

ot jump to the more general but hasty conclusion that shorter

alues of τ lead to fewer pulsations. For example longer convec-

ive time delays from the injection point lead to better mixing
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Fig. 5. Stability boundary of an acoustic mode at frequency ω 0 coupled to a flame with nondimensional gain β and phase φ(ω) = φ0 − τ (ω − ω 0 ) as presented in Fig. 1 . In 

both figures the vertical axis is the phase φ0 = φ(ω = ω 0 ) between heat release rate q and the acoustic pressure at the flame location p , calculated at ω = ω 0 . The horizontal 

axis is the nondimensional slope of the flame phase τω 0 . The boundary of stability depends parametrically on the ratio of the flame linear driving β over the level of 

acoustic damping α. For a fixed ratio β/ α, the system is unstable between the two red lines linked by the black arrow. In a) we present the frequency of oscillation ω B 

in terms of the ratio ω B / ω 0 on the colourbar on the right. ω B is both the frequency of oscillation on the boundary of instability as introduced in Section 3 and also the 

frequency of oscillation of the limit cycle solution as proved in Section 4 . The domain in the vertical axis is periodic in [ −π, π ] and lies between the two horizontal thick 

black lines. It is extended beyond its periodic boundaries to plot both frequency shifts in the two regions where the two colours would overlap. Note that if the slope of 

the phase τω 0 is larger than approximately 5 π , for a value of β/α = 3 : a) the system pulsates regardless of the phase φ0 ; b) the system admits two limit cycle solutions at 

two different frequencies, one larger and one smaller than ω 0 , in the two regions at the top and at the bottom where the red lines cross. The range of frequency shifts from 

ω 0 is in line with the literature discussed in the introduction. In b) we present the phase φqp between heat release rate q and pressure p . This value is valid both on the 

boundary of stability and in the nonlinear regime, and is consistent with experimentally determined values [87,88] . The black arrow is the interpretation of an experiment 

[34] , detailed in Section 3.3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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which reduces in turn the amplitude of equivalence ratio fluctu-

ations at the flame, and longer flames have a larger standard de-

viation γ in (14) . Both factors usually lead to a smaller equiv-

alent gain β in (15) , as discussed for one particular system in

Fig. 4 . 

We observe how there is a region on the right of Fig. 5 a where

there exist two different frequencies of oscillation. In particular the

yellow triangle above the line φ0 = π actually overlaps the indigo

blue triangle below the line φ0 = −π . In the nonlinear regime, ei-
ther one of the two could take over. The numerical simulations e  
uggest that, for the simple nonlinear saturation model considered

n this manuscript, the limit cycle solution with the higher lin-

ar growth rate prevails over the other. This would mean that in

he experiments only the strongest mode of the two would be ob-

erved, making validation difficult. 

We present in Fig. 5 b the same data, but plot in colour the

hase φqp between the heat release rate q and acoustic pressure

 . The critical value of | φqp | on the boundary of stability is smaller

han π /2 because of the acoustic damping, as discussed by Hong

t al. [88] , and agrees well with their experimental values. Hong
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t al. [88] concludes that the phase φqp [...] may be used to quan-

ify the state of the combustor within a dynamic mode . Consistently,

e observe in Fig. 5 b that φqp is a good metric for how close

o the boundary of neutral stability the mode is. The critical val-

es of | φqp | slightly larger than 3 π /8 on the boundary of stability

or β/α = 3 compare well with the maximum experimental values

easured by Hong et al. [88, Fig. 6] . The range covered by φqp de-

ends on the ratio β/ α. For example the range of φqp found by

urox et al. [87, Fig. 8] to be approximately [ −π/ 4 , π/ 4] corre-

ponds in Fig. 5 b approximately to β/ α ≈ 2. 

.3. Interpretation of one thermoacoustic transition observed by 

oudy et al. [34] 

We conclude this section with the interpretation of one exper-

ment using the results of Fig. 5 . Boudy et al. [34, Fig. 4] charac-

erise a combustor that during a controlled parametric reduction

f the feeding manifold L 1 transitions through three states: 1) the

ulsation frequency decreases from the acoustic frequency ω 0 of

he second mode, with a decreasing ratio ω B / ω 0 ; 2) the combus-

or stays quiet for a small interval of �L 1 ; 3) the combustor pul-

ates again, but on the other side of ω 0 , with ω B > ω 0 . In the two

usating states the amplitude u ′ rms /U bulk of the limit cycles stays

n the range [0.2 , 0.3] [34, Fig. 8] , where the phase slope is quite

onstant [34, Fig. 7] . With reference to Fig. 5 , one can interpret

he transition between the first two states as a point in the fig-

re moving down from φ0 = 0 , with a ratio ω L / ω 0 dropping. This

s qualitatively presented in the Figure with a black arrow passing

hrough the three states 1,2,3. Due to the change of the frequency

 0 which now approaches 900 Hz, the gain of the flame reduces

34, Fig. 7] . As a result, the unstable region shrinks towards the

ine φ0 = 0 , the point exits the unstable region from the bottom

nd the combustor becomes stable. Due to the reduction of L 1 , we

ave a change of ω 0 and of the phase φ0 , and the point continues

oing down and reenters the domain from the top due to the peri-

dicity. When it touches the top boundary of stability, the system

ulsates at a frequency now larger than ω 0 . Further reduction of

 1 leads to a decrease of φ0 towards 0 so that the frequency ω B 

pproaches ω 0 . This section showed how the proposed model cap-

ures the transition between different thermoacoustic states, and

mplitude and frequency variations that are typical of thermoa-

oustic systems. 

.4. Sensitivity to the level of acoustic damping 

As discussed at the end of Section 2.4 , the plots presented so far

re for a value of α/ω 0 = 0 . 08 , which we chose as representative

f a class of thermoacoustic systems. In general this value depends

n very many factors, e.g. the compactness of the combustion sys-

em, the flow path, the installation of acoustic dampers, the acous-

ic dissipation at the combustor boundaries, the Mach number of

he flow, etc. We conclude this section by discussing the sensitiv-

ty with respect to this value. We present in Fig. 6 the same results

f Fig. 5 but for α/ω 0 = 0 . 04 . Because we fix the ratio β/ α to the

ame range [0, 3], we find that smaller values of α and hence β
ead to smaller frequency shifts of ω from ω 0 for a fixed value of

ω 0 in Fig. 3 b. Physically, this has the simple interpretation that

f the acoustics are little damped and little amplified, the acous-

ic frequency is little affected by them. Conversely, the smaller fre-

uency shift leads to a smaller change in the phase φ, resulting in

 weaker dependence of the boundary of stability on the slope of

he phase. 
. Nonlinear analysis 

The main objective of this section is to extend the validity of

he results obtained on the boundary of stability in the linear

egime to the nonlinear regime. In particular this will allow us to

nterpret ω B and φqp as the limit cycle frequency and the limit cy-

le flame phase. To this aim we apply two nonlinear methods to

redict analytically the amplitudes and frequencies of oscillation.

s compared to previous work on the topic, the major technical

ovelty of this section is in the fact that we explicitly calculate

ow the instantaneous frequency of oscillation varies as a function

f the amplitudes of oscillations, instead of fixing it to a constant

alue, as presented for example in Fig. 2 b. The section is structured

o that a reader mostly interested in the results can directly start

eading at Section 4.6 . In Section 4.1 we apply the method of aver-

ging and in Section 4.2 we discuss the choice of the frequency of

scillation. In Section 4.3 we apply the method of multiple scales

nd in Section 4.4 we validate both methods numerically. 

.1. Method of averaging 

In this section we apply first order averaging to the model, as

efined and discussed in [89] . We rewrite (18) as a first order sys-

em (x j , y j ) ≡ (η j , η
′ 
j 
) : 

 

′ 
j (t) = y j (t) (28a) 

 

′ 
j (t) = −ω 

2 
0 x j (t) + f j (28b) 

here f 1 = f (y 1 (t) , y 1 (t − τ ) , y 2 (t − τ )) and f 2 = f (y 2 (t) , y 2 (t −
) , y 1 (t − τ )) . We introduce the change of variables ( x j , y j ) → ( A j ,

j ): 

2 x j (t) = A j (t) e i (ωt+ ϕ j (t)) + c.c. 

2 y j (t) = iωA j (t) e i (ωt+ ϕ j (t)) + c.c. 
(29) 

here c.c. denotes the complex conjugate of the expression to its

eft. Note that we do not constrain the oscillation frequency ω in

29) to match the acoustic frequency ω 0 . The application of the

ethod of averaging is standard (see Appendix B ) and assumes

hat the delay is small compared to the slowly varying timescale.

e obtain a set of equations in the variables { A 1 , A 2 , ϕ, ϕ avg ≡
(ϕ 1 + ϕ 2 ) / 2 } : 
 

′ 
1 = 

A 1 

2 

(β cos (τω) − α) − 3 

32 

A 1 κω 

2 
(
A 

2 
2 cos (τω + 2 ϕ) + . . . 

. . . 3 A 

2 
1 cos (τω) + 2 A 

2 
2 cos (τω) 

)
(30a) 

 

′ 
2 = 

A 2 

2 

(β cos (τω) − α) − 3 

32 

A 2 κω 

2 
(
A 

2 
1 cos (2 ϕ − τω) + . . . 

. . . 2 A 

2 
1 cos (τω) + 3 A 

2 
2 cos (τω) 

)
(30b) 

 

′ = 

3 

16 

κω 

2 sin (ϕ) 
(
A 

2 
1 cos (ϕ − τω) + A 

2 
2 cos (ϕ + τω) 

)
(30c) 

 

′ 
avg + 

ω 

2 

= 

ω 

2 
0 

2 ω 

− 1 

2 

β sin (τω ) + 

3 

64 

κω 

2 
(
A 

2 
2 sin (τω + 2 ϕ) − . . . 

. . . A 

2 
1 sin (2 ϕ − τω) + 5(A 

2 
1 + A 

2 
2 ) sin (τω) 

)
(30d) 

In (30) , the first three equations describe the amplitudes and

he synchronisation of the two oscillators: the fixed points of these

hree equations in the three variables { A 1 , A 2 , ϕ}, which depend

arametrically in ω, are the synchronised solutions of the system.

he role of the last Eq. (30d) will be explained in the next section

ection 4.2 . 
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Fig. 6. Same as Fig. 5 , but for a level of acoustic damping α/ω 0 = 0 . 04 instead of 0.08. Since the investigated range of β/ α is the same as Fig. 5 , this case presents smaller 

forcing terms f on the right hand side of (18) , the acoustic field is less perturbed and the thermoacoustic frequency ω B in a) is closer to ω 0 than in Fig. 5 . 
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For a fixed value of ω there are only two stable solutions among

the fixed points of the system of equations (30a), (30b) and (30c) .

These stable solutions are spinning waves and have amplitudes and

phases: { 

A 1 = A 2 = 

2 √ 

3 ω 

√ 

β−α sec (τω) 
κ

ϕ = ±π/ 2 

(31)

4.2. The choice of ω 

We recall that ω defines the period 2 π / ω over which we carry

out the time averaging, so that we should always choose ω to

match the instantaneous frequency of oscillation of the oscillator

in order to average exactly over one period of oscillation. When

applying the method of averaging, one often assumes that the fre-

quency of oscillation ω is close to the acoustic frequency of oscilla-

tion ω 0 of the unperturbed oscillator, and is approximately ω ≈ω 0 .

This assumption is often carried out earlier in the analysis, by fix-

ing ω = ω 0 in (29) . We have however observed in Section 3 that

the frequency of oscillation ω B of the neutrally stable, linearised

system departs from ω 0 , and is most noticeably dependent on τ ,

as in Fig. 3 b. 

We can improve the choice of ω from ω 0 by using (30d) , and

choosing ω such that the mean average phase ϕavg is a fixed point

of the system too. This also means that the frequency of averaging

ω of the system matches the instantaneous frequency of the two

oscillators, since we have that 

ω 

inst 
AVG (t) = 

∂ 

∂t 

(ωt + ϕ 1 (t)) + (ωt + ϕ 2 (t)) 

2 

= ω + ϕ 

′ 
avg ( t) (32)

This leads to an equation for ω: 

ω 

2 = ω 

2 
0 − βω sin (τω) + 

3 

κω 

3 
(
A 

2 
2 sin (τω + 2 ϕ) − . . . 
32 
. . . A 

2 
1 sin (2 ϕ − τω) + 5(A 

2 
1 + A 

2 
2 ) sin (τω) 

)
(33)

n the linear regime A i → 0, and from (33) we recover the linear

ispersion relation (26b) , with the difference that this time it is

ot calculated on the boundary of instability, i.e. (26a) does not

old. 

In the general nonlinear regime before saturation, the frequency

f oscillation shifts from the value ω solution of (33) and depends

n the two amplitudes A 1 and A 2 and also on ϕ as described by

33) . We numerically integrate in time the first three equations

30) , and at each timestep calculate the instantaneous frequency

, which satisfies (33) . An example of a simulation is reported in

ig. 2 , where A 1 , A 2 and ϕ are reported as dotted lines. 

In the nonlinear regime but at the converged limit cycle solu-

ion, we calculate the frequency ω LC of oscillation at the limit cycle

y substituting (31) into (33) and obtain: 

 (τ, ω LC ) ≡ ω 

2 
LC − ω 

2 
0 + αω LC tan (ω LC τ ) = 0 (34)

e find that (34) , defining ω LC , matches (27) defining ω B , which

s the frequency of the system on the boundary of linear stability

btained by suitably reducing the flame response of the unstable

ystem to make it neutrally stable. We now show an example of

he predictions of (32) in a time domain simulation. To numeri-

ally integrate in time the system of equations (30) , at each time

tep we numerically solve (33) for ω, and then calculate the right

and sides of (30) and proceed at the next time step. In Fig. 2 b

e compare the instantaneous frequency ω as extracted from the

riginal oscillators and the solution ω AVG of (33) calculated as a

unction of the instantaneous amplitudes A j . We have overall very

ood agreement, while we observe some small error in the fully

inear and fully nonlinear regime. 
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7 Note that this does not affect any of the results of Section 4.1. 
8 Solutions for the two modes were presented in (31) . 
In the fully linear regime at the left of Fig. 2 b the error be-

ween the frequency ω AVG and the frequency of the linearised sys-

em is due to an inherent limitation of the method of averaging,

hich assumes that ηj and ∂ ηj / ∂ t are exactly in quadrature. This

s exact at the limit cycle if one neglects higher order harmon-

cs, while the error made is largest where the growth rates are

argest, which in this case is at the onset of oscillation. This error is

owever marginal and smaller than 0.02% in this time simulation.

n the fully nonlinear regime at the right of Fig. 2 b the error be-

ween the frequency ω AVG and the predicted frequency of oscilla-

ion ω B is due to the fact that we are neglecting the contribution

f higher order harmonics that in this case makes the amplitudes

 j just 1.5% smaller than the prediction A AVG in Fig. 2 a. This in turn

ffects the am plitudes in (33) , leading to an error however smaller

han 0.02%. 

We add a final note on the formal correctness of this derivation

here the frequency of oscillation ω depends on time. The time-

erivatives of { η j , η
′ 
j 
} are O (1) quantities i.e. are governed by time

 . The method of averaging assumes that the slowly varying am-

litudes and phases are O ( ε) quantities, i.e. are governed by time

 ≡ εt . In (B.1) we keep the terms that are O ( ε) i.e. we keep the

ime derivatives of the slow flow variables. In the mathematical

erivations leading to (B.1) , and more clearly in (32) , we are im-

licitly assuming that the time derivative of ω can be neglected,

.e. we assume that ∂ ω/ ∂ t is a term that scales with O ( ε2 ) and ne-

lect it. We present evidence that this approximation is reasonable

n Fig. 2 b, where we observe that ω AVG is rather close to the re-

onstructed value of ω especially in the regions where ∂ ω/ ∂ t � = 0. 

.3. The method of multiple scales 

We apply the method of multiple scales. We do not report the

etails of the derivation, which can be found in [90] . One obtains

he set of equations: 

 

′ 
1 = A 1 

L − κN A (A 

2 
1 , A 

2 
2 , + ϕ) 

D 

(35a) 

 

′ 
2 = A 2 

L − κN A (A 

2 
2 , A 

2 
1 , −ϕ) 

D 

(35b) 

 

′ = κ
N ϕ (A 

2 
1 , A 

2 
2 , ϕ) 

D 

(35c) 

 

′ 
avg = 

N ϕ avg 
(A 

2 
1 , A 

2 
2 , ϕ) 

2 D 

(35d) 

here the expressions of L, N A , N ϕ , N ϕ avg and D are reported in

ppendix C , and the method predicts the instantaneous frequency

f oscillation as 

 

inst 
MMS (t) = ω B + ϕ 

′ 
avg (t) (36) 

n the first two equations, L / D is a linear growth coefficient and the

erm N A / D is responsible for the nonlinear saturation of the ampli-

udes. The third equation governs the synchronisation of the two

scillators, and depends only on nonlinear terms, since it is pro-

ortional to κ . The right hand side of (35d) is the frequency shift

f the two oscillators, which depends on the amplitude of oscilla-

ion. 

There are only two stable solutions among the fixed points of

he system of equations (35a), (35b) and (35c) and they match

xactly the solutions (31) of the method of averaging. The mean

requency of oscillation of the limit cycle is ω B , because once we

ubstitute (31) into (35d) we find that the numerator on the right

and side evaluates to zero. This means that the method of mul-

iple scales predicts that the frequency of oscillation at the limit
ycle equals ω B , matching the prediction of the method of averag-

ng. 

For completeness, we present the instantaneous frequency of

scillation using the method of multiple scales as ω MMS ( t ) in

ig. 2 b. The performance of this estimate is overall similar to the

ethod of averaging, slightly better in the linear regime at small

mplitudes. 

.4. Accuracy of the nonlinear solution 

We tested the quality of these analytical solutions for a series

f numerical simulations of (18) using the solver pydelay [91] . In

articular we fix α/ω = 0 . 08 and run simulations of (18) on a fine

rid with 153 values of β/ α equispaced between 0 and 3 and 337

alues of τω 0 equispaced between 0 and 8, for a total of 51 , 561

imulations. We started the numerical integration at t = 0 , with

 history function defined for t ∈ [0 , −τ ] , which is oscillatory. We

hen extract the amplitude and the frequency of the solutions once

he numerical code has converged to a limit cycle. We report the

mplitude in Fig. 7 a, and the frequency in Fig. 7 b. The agreement

s overall very good, except for a small discrepancy at small val-

es of β/ α, where the contour line of the numerical solution at

 = 0 . 051 is slightly jagged and slightly underpredicts the analyt-

cal solution in a few regions. This is due to the fact that we ex-

racted the amplitudes from the numerical solutions too early in

ime, before the system had fully converged to the limit cycle. This

s corroborated by the fact that for a constant α, smaller values

f β/ α make the system more weakly nonlinear, leading to longer

ime-scales for the evolution of the slow flow variables. On the

orizontal line β/α = 3 at the border of the investigated param-

ter space, where the system is more strongly nonlinear, the error

etween the predicted and measured amplitude was found to be

maller than 2.2%. On the same line, the error in the prediction of

he frequency of oscillation was smaller than 0.08%. 

.5. The case of an axial mode 

The averaged equations of (21) are obtained similarly: 

 

′ 
1 = A 1 ,τ

[
ν − δA 

2 
1 ,τ

]
(37a) 

 

′ 
1 + 

ω 

2 

− ω 

2 
0 

2 ω 

= − β

2 

sin (τω) + δ tan (τω) A 

2 
1 ,τ (37b) 

here we introduce 

ν = (β cos (τω) − α) / 2 

δ = 3 κ cos (τω ) ω 

2 / 8 

(38) 

or reference, we observe that we can rewrite the right hand side

f (37a) in terms of the flame describing function as Re [ Q(A (t −
))] A (t − τ ) / 2 and similarly for (37b) . Note how the amplitude A 1 

n the right hand side of (37a) is delayed, i.e. A 1 ,τ (t) = A 1 (t − τ ) .

n other words, we are not assuming here, as we did just after

ection 4.1 , that the delay τ is small compared to the time scale of

 

′ 
1 
, because this section focuses in detail on the growth rate of A 1 . 

7 

he limit cycle solution of the axial mode has the same amplitude

 and the same frequency ω B of the solution of the problem with

wo azimuthal modes: 8 

 = 

√ 

ν

δ
= 

2 √ 

3 ω B 

√ 

β − α sec (τω B ) 

κ

ith ω B solution of h (τ, ω L ) = 0 in (34) . This means that the non-

inear results of Fig. 7 a apply also to a single mode. 
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Fig. 7. Nonlinear stability analysis of axial and azimuthal thermoacoustic modes characterised by an acoustic frequency of oscillation ω 0 . a) Amplitude of oscillation A 
√ 

κω 0 . 

b) Frequency of oscillation ω / ω 0 . We compare the saturated amplitude and frequency at the limit cycle (l.c.) extracted from the numerical integration of the original system 

(18) (in colour) and of the analytical solution (black lines). In both a) and b) the black lines were chosen to be at the same levels as the colour contour boundaries. The two 

coincide almost exactly showing that the analytical solution matches the results of the numerical integration of the original system. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article). 
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4.6. Discussion 

Using the method of averaging and the method of multi-

ple scales we have obtained two sets of equations, respectively,

(30) and (35) . Despite the fact that the two sets of equations dif-

fer, they share the same stable limit cycle solution, oscillating at

the frequency ω B of the neutrally stable system, 9 and at the ampli-

tude described by (31) . This and the other results hold both for az-

imuthal and axial modes. As discussed in Section 4.4 , the analyti-

cal solutions were validated against numerical simulations with ex-

cellent agreement, confirming that they characterise correctly the

limit cycle solution. We present in Fig. 7 the amplitudes and fre-

quencies of oscillation of the limit-cycle solution. As expected, in

Fig. 7 a the amplitude grows from a value of 0 on the boundary of

neutral stability as the ratio β/ α increases along vertical lines of

constant τω 0 . Importantly, the smooth amplitude contour of the

system in the nonlinear regime confirms that all the practical con-

siderations discussed in Section 3 are still valid in the nonlinear

regime. 

We observe in Fig. 7 b that along vertical lines the frequency

of oscillation at the limit cycle is constant, i.e. is independent of

the flame strength β for a fixed level of acoustic damping α, as

discussed also analytically in Section 4.2 . This means that systems

with different flame strengths β start at zero amplitude of oscil-

lation with a different, linear frequency of oscillation ω lin as in

Fig. 2 b, but they all converge to the same frequency of oscillation

ω B . Note that we observe a frequency shift as a function of am-

plitude despite the fact that the flame phase does not depend on
9 Defined as the solution of (26b) . 

i  

q  

s  
mplitude. This shift is small in the specific case of Fig. 2 b, but can

e larger, and has been already observed in the literature: In par-

icular Palies et al. [36, Fig. 8, first column] carry out a describing

unction limit cycle calculation and observe a shift from the lin-

ar frequency to the limit cycle frequency up to 3%, in a range of

requencies where the flame phase is constant with amplitude [36,

ig. 2 at 145 Hz] . 

We have just discussed that ω B does not depend on the flame

trength β , but only on the level of acoustic damping α/ ω 0 and

n the phase response, as presented in Figs. 5 and 6 . This has the

hysical interpretation that no matter how strong the flame re-

ponse, pulsations will grow to an amplitude where the nonlinear

ain of the flame balances the level of acoustic damping, which

ill be the same level obtained by reducing the flame strength to

ake the system onto the boundary of stability. 

Both methods predict the evolution of the frequency of oscil-

ation with time, as shown in Fig. 2 b. In the general case, sources

flames) and sinks (dampers) have a phase response that depends

n the amplitude, leading to larger frequency shifts from the lin-

ar to the nonlinear regime. It is especially in these situations that

ne should take into account, in the time domain, the dependence

f the frequency of oscillation on the amplitudes, as done here in

33) . 

. Linear growth rate estimation 

We have presented evidence at the end of Section 3 comment-

ng on Fig. 3 of how neglecting the part of the heat release rate

 not in phase with the pressure p as assumed in [47,48] leads to

ystematic errors in the prediction of the boundary of stability and
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Fig. 8. Linear growth rates (g.r.) of: the original equations of the system (2.3) with delay (blue), the truncated equations of the method of averaging (red), the equations of 

the method of multiple scales (green). These results are for β/α = 2 , α/ω = 0 . 08 . (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article). 
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10 Here and in the following, we use for brevity the term flame to mean the fluc- 
s a consequence of the amplitudes of oscillation. However, this as-

umption allows us to use a simplified model to identify the linear

rowth rate based on the pressure time series of a thermoacous-

ic system [48,92] . One can then ask if the simplified model suffers

he same systematic errors if it is used to identify a system instead

f predicting its state, with a particular focus on the quantity of in-

erest that is the linear growth rate. To this aim, in this section we

how how the system of equations assumed by Noiray [92] with a

ero delay τ , resembles in a certain mathematical sense the origi-

al system of equations with a non-zero delay τ . If this is the case,

hen one can safely use the methods discussed in [92] for linear

rowth rate estimation. We leave open the question of the identi-

cation of the delay τ and the case of azimuthal instabilities and

ocus on a thermoacoustic system with a single mode. We observe

hat the frequency of oscillation ω( t ) is close to ω B and in the fol-

owing assume that ω(t) = ω B ∀ t in (37a) and discard the study of

he equation for ϕ1 . Noiray [92] identifies a system of equations

ike (21) but with τ ( E ) set to zero: 

′′ 
1 (t)+ ω 

2 
0 (E) η1 (t) = f (η′ 

1 (t) , η′ 
1 (t − τ )) , 

with f (a ) ≡ a (β(E) − κ(E) a 
2 ) − αa (39a) 

ith the respective slow flow equation: 

 

′ 
1 = A 1 

[
ν(E) − δ(E) A 

2 
1 

]
(39b) 

We then want to understand if there exists a set of coefficients

 ν( E ) , δ( E ) , ω 0( E ) } such that the dynamics of the equivalent (hence

he subscript ( E )) system (39b) matches the dynamics of the orig-

nal system (37a) , so that the system identification would identify

t. We first observe that the frequency of oscillation of (39a) is well

pproximated by ω 0( E ) , so that it has to be ω 0 (E) = ω B . We then

bserve that in principle the dynamics of (37a) and (39b) cannot

atch because the first is of delayed differential type, while the

econd is of ordinary differential type. We can however approxi-

ate the Taylor expansion of the delayed term to the first order

n τ : 

 1 ,τ = A 1 (t − τ ) ≈ A 1 (t) − τA 

′ 
1 (t) + O(τ 2 ) (40) 

y substituting (40) into (37a) and after some manipulation we ob-

ain: 

 

′ 
1 (1 + ντ − 3 δτA 

2 
1 ) = νA 1 − δA 

3 
1 (41) 

espite the fact that (41) does not have the same structure as

39b) in the nonlinear regime, one can expand in Maclaurin se-

ies the expression of A 

′ 
1 in powers of A 1 , truncate it to the third

rder, and match suitably the coefficients { ν( E ) , δ( E ) }. In the linear

egime the two systems are equivalent: 

(E) = ν(E) ≈
ν

1 + τν
(42) 

here σ ( E ) is the growth rate of (39a) . 

t

A similar argument can be applied with the method of multi-

le scales. In the linear regime the two modes A 1 and A 2 are de-

oupled in (35) and the linear coefficient matches the case of one

hermoacoustic mode only. In this case the system is already of

rdinary differential type, and one expects that 

(E) = ν(E) ≈
L 

D 

(43) 

We find good qualitative agreement in Fig. 8 between the exact

rowth rate of (21) in blue, the growth rate (42) in red, and the

rowth rate (43) in green, with the discrepancies to be attributed

o the imperfect accuracy of the two nonlinear methods. As a com-

ent, we observe in Fig. 8 a reduction as a function of τω 0 of all

hree growth rates. This effect of the delay τ can be observed in

42) and is additional to the direct effect of the phase τω between

 and p accounted for in the cos ( τω) term in the definition (38) of

. To conclude, we observe that equations (39) used by Noiray [92] ,

ith suitable coefficients { ν( E ) , δ( E ) }, match either the third order

aclaurin expansion of the equations (41) of the truncated method

f averaging, or the equations of the method of multiple scales for

ne mode, assuming the approximation introduced by the trunca-

ion of the equations is acceptable. Then it follows that the system

dentification method [92] applied to timeseries of the original sys-

em (2.3) with delay should produce good growth rate estimates of

he original system, within the limits of these approximations. The

ismatch in Fig. 8 shows that some of these approximations play

 limited role. 

This approximate equivalence between the models with and

ithout delay is in line with past experience [43] with growth rate

redictions on a model with a time delay, but requires further nu-

erical evidence. 

. Conclusions 

The aim of this work is to draw general conclusions about

he stability of thermoacoustic systems, by accounting for the fact

hat most flames 10 have a response with a decreasing phase as

unction of the frequency ω, which can be approximated with a

lope −τ . 

We find that the system’s stability depends on the flame phase

nd gain as expected but also that steep phase responses, i.e. large

alues of τ , make the system more unstable, i.e. lead to an in-

rease of the growth rate. This latter effect is closely related to how

 thermoacoustic system can pulsate at a frequency ω B different

rom the frequency ω 0 of the acoustic mode of the system that we

ocus on. In particular for a fixed frequency shift �ω = ω B − ω 0 , a

teeper phase response leads to a larger phase change �ϕ = τ�ω
hat in turn can make the Rayleigh term positive and the system

nstable. We show that: 1) flames with a steep flame phase are
uating heat release rate coming from the flame. 
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Fig. A1. Curves (A.6) for different values of the nondimensional damping α/ ω, 

zoomed in to the approximate range for ω for thermoacoustic applications fixed 

to ω 0 ± 20%. In the following we use α/ω = 0 . 08 . 
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more likely to excite pulsations in a given combustor; 2) a flame

responding in anti-phase with the pressure at the flame location at

the frequency ω 0 can still make the system unstable at a frequency

ω � = ω 0 in the neighbourhood of ω 0 ; 3) a flame can destabilise an

acoustic mode regardless of its phase at ω 0 . For a given system

characterised by a certain local phase slope τ in the vicinity of the

frequency of oscillation ω 0 , the quick calculation of τω 0 allows the

estimation of the strength of the effect of the flame phase slope on

the boundary of stability and amplitudes of the system. 

We show how the model recovers frequency shifts that match

typical experimental values, which are reviewed together with

damping rates and growth rates for a selected set of references.

Also the range of the phase φqp between heat release rate and

acoustic pressure is close to experimental experience. In particu-

lar the model explains how φqp is an indicator of mode transition

as proposed by Hong et al. [88] . We also present the interpretation

of one transition between unstable/stable/unstable conditions with

a strong frequency shift in the experiment of Boudy et al. [34] . 

We apply in the nonlinear regime the method of averaging and

multiple scales. Both nonlinear methods lead to excellent results in

the range of parameters that are typical of thermoacoustic oscilla-

tions when compared to numerical simulations. We prove that the

results that apply in the nonlinear regime at the limit cycle match

the results on the boundary of instability, obtained by suitably re-

ducing the flame gain to the point of making the system neutrally

stable. Both linear and nonlinear results apply to systems with ei-

ther only one axial mode oscillating, or two degenerate azimuthal

modes oscillating, where the coefficients in the equations differ in

the two cases, as discussed first by Crocco [93] . 

We discuss also the sensitivity to the level of acoustic damping

in the system. We find that, assuming the system saturation occurs

because of nonlinear flame gain saturation, larger levels of acoustic

damping lead to larger shifts of frequency at the limit cycle from

the acoustic frequency ω 0 . This effect is not governed by the flame

gain because, regardless of its value in the nonlinear regime, it de-

creases up to the point of matching the level of acoustic damping. 

We show that the part of flame response not in phase with the

pressure at the flame location cannot be neglected when carrying

out a prediction of the solution of a thermoacoustic system. This

however does not imply that one must account for this compo-

nent when identifying the linear growth rate of an observed ther-

moacoustic system. In an attempt to address this latter point, we

present in Section 5 a conjecture suggesting that one may neglect

this component when estimating the linear growth of a time se-

ries. A quantitative discussion of this conjecture will require fur-

ther numerical validation. 
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Appendix A. Mathematical derivation of the linear stability 

analysis 

By studying as a function of σ the left and right hand sides

of (25a) for fixed values of the other parameters in the discussed

ranges, we find that there exists only one solution for the growth

rate σ , and that it is positive if β cos ( τω ) − α > 0 . It follows that

(26a) defines the boundary of stability, with the system being

unstable if the left hand side is positive. We also observe from

(26b) that on the boundary, if τ is zero, ω B matches the acoustic

frequency of oscillation ω 0 . We observe that if ( α, β , τ ) provide a

real-valued solution ω B of (26) , then ( α, β , τ k ) is a solution too,

with 

τk = τ + 2 kπ/ω B , k ∈ N 

+ . (A.1)
 i  
e can then initially limit the search of solutions restricting the

omain of τ to 

∈ 

[ 
− π

ω B 

, 
π

ω B 

)
(A.2)

nd then exploit (A.1) to generate the other solutions. Since ω B 

s close to the natural frequency of the system, ω 0 , the domain

A.2) is bounded. Moreover, since α and β are positive, (26a) al-

ows us to further restrict the domain so that the cosine term is

ositive: 

∈ 

[ 
− π

2 ω B 

, 
π

2 ω B 

)
(A.3)

his is in line with the Rayleigh criterion [1] : the phase difference

etween q and p must be in the range (−π/ 2 , π/ 2) to maintain or

ustain instability. 

The domain (A.3) allows negative values of τ , though a negative

alue in the system does not make physical sense. We investigate

egative solutions nonetheless, because they lead to positive solu-

ions τ k by the application of (A.1) . The neutrality of the solutions

s defined by (26a) , from which we can calculate the linear driving

L at the onset of instability as a function of α and τ : 

L = α sec (τω B ) , (A.4)

he frequencies of the neutrally stable solutions are the solutions

 B of (26b) . We substitute β from (A.4) into (26b) and obtain: 

 (τω 0 , ω B /ω 0 ) ≡ ω 

2 
B − ω 

2 
0 + αω B tan (τω B ) = 0 (A.5)

e can solve τω 0 as function of ω B / ω 0 parametrically in the level

f damping α/ ω 0 : 

ω 0 = 

(
ω B 

ω 0 

)−1 

arctan 

⎛ 

⎜ ⎝ 

1 −
(
ω B 

ω 0 

)2 

α

ω 0 

ω B 

ω 0 

⎞ 

⎟ ⎠ 

(A.6)

eported in Fig. A.1 . There are two solutions ω B for each value of τ
f ˆ τ < τ < 0 , with ˆ τω 0 ≈ −1 . 13 . This line shows the effect of τω 0

n the frequency shift, ω B / ω 0 , on the border of neutral stability. 

We present in Fig. A.2 .a the curve for α/ω 0 = 0 . 08 , but colour

t based on the value of the ratio β/ α that makes the system
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Fig. A2. Linear stability analysis, carried out parametrically as a function of the local slope τω 0 . a) The coloured line is the frequency of the neutrally stable modes as a 

function of τω 0 . This is the line for α/ω 0 = 0 . 08 presented first in Fig. A.1 , but coloured with the values of β/ α that make the system neutrally stable. b) stability map of 

the system. This is the same data of a) but swapping the vertical axis with the colourmap. The coloured line represents the values of β/ α as a function of τ on which the 

system is neutrally stable. We study the system for positive values of τω 0 , where the linearly unstable region is reported in grey. The same analysis on the system obtained 

by neglecting the component of q not in phase with p as done in [47,48] is reported with black lines in frames a) and b). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article). 
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eutrally stable calculated using (A.4) and zoom to the range

f parameters typical of thermoacoustic applications discussed in

ection 2.4 . We present in Fig. A.10 b the same information but in-

ert the vertical axis and the colourmap. We mention how similar

lots for liquid propellant rockets date back at least to [93, Fig. 1] . 

We then recover the full boundary of neutral stability by ap-

lying the transformation (A.1) to values of ( β/ α, τω 0 ) from

ig. A.2 and present it in Fig. 3 . In Fig. 3 a the lobe/trough

ith a minimum at τω 0 = 2 π is obtained for k = 1 in (A.1) ,

he lobe/trough with a minimum at 4 π is obtained for k = 2 in

A.1) and so on so forth. The mapping (A.1) is key to interpret how

he boundary of stability is deformed as function of k . In partic-

lar one sees that if ω B = ω 0 , the point τω 0 is simply mapped

o τω 0 + 2 kπ, in a periodic fashion. Then, if ω B < ω 0 , the point

s mapped to a larger value than τω 0 + 2 kπ, and if ω B > ω 0 it is

apped to a smaller value of τω 0 + 2 kπ . 

.1. Results obtained neglecting the imaginary part of the describing 

unction 

For comparison with the previous work of Schuermans et al.

47] and Noiray et al. [48] , we now make the same assumption and

et to zero the part of the heat release rate q out of phase with p ,

.e. the sin (.) term appearing in Eq. (26b) . Eqs. (26) simplify to 

cos ( τω B ) − α = 0 (A.7a) 

 

2 
B − ω 

2 
0 = 0 (A.7b) 

In Eqs. (A.7) we find that regardless of the values of α, β and

the linear frequency of oscillation at the neutral boundary of

tability coincides with the natural acoustic frequency of the un-

erturbed oscillator: 

β = α/ cos (τω 0 ) 
ω B = ω 0 

(A.8) 

hese results are presented in Figs. A.2 and 3 with black lines. 

.2. Generalisation for ψ ≡ φ0 + τω 0 � = 0 

We can rewrite (15) as 

ˆ q (ω) 

ˆ p (ω) 
= βe i (ψ−τω) for ω close to ω 0 , ψ ∈ [ −π, π) (A.9) 
here 

 = φψ 

0 
+ τψ ω 0 (A.10) 

ne looks for the solution of (26) where the additional term −ψ
ppears in the equations: 

cos ( τω B − ψ ) − α = 0 (A.11a) 

 

2 
B − ω 

2 
0 + βω B sin ( τω B − ψ ) = 0 (A.11b) 

One can generate a solution for (A.11) from the solution of (26) .

n particular, we observe that if { α, β, τψ=0 ω 0 } lead to a neutrally

table frequency ω B / ω 0 in (26) , then { α, β , τψ ω 0 } lead to the same

requency ω B / ω 0 if: 

ψ=0 ω B = τψ ω B − ψ (A.12) 

e substitute in (A.12) the expression (A.10) for ψ and obtain: 

ψ=0 ω B = τψ (ω B − ω 0 ) − φ0 (A.13) 

e now observe from (A.10) that 

ψ=0 
0 

= −τψ=0 ω 0 (A.14) 

e manipulate the left hand side of (A.13) , and substitute (A.14) to

btain 

ψ=0 ω B = τψ=0 ω 0 + τψ=0 (ω B − ω 0 ) (A.15) 

= −φψ=0 
0 

+ τψ=0 (ω B − ω 0 ) (A.16) 

inally, by moving the terms between the two sides, (A.13) be-

omes 

ψ 

0 
− φψ=0 

0 
= 

(
ω B 

ω 0 

− 1 

)
(τψ ω 0 − τψ=0 ω 0 ) (A.17) 

q. (A.17) shows that one point (τψ=0 ω 0 , β/α) of the boundary

f stability of Fig. 3 , which has a flame phase at ω = ω 0 ex-

ressed by (A.14) , is mapped in the general case to a line with

lope ω B /ω 0 − 1 . We draw these lines of neutral stability in red in

ig. 5 for different values of the ratio of β/ α. In particular for each

alue of the ratio β/ α there are two lines, one with positive and

ne with negative slope. A point ( τω, φ0 ) is linearly unstable if it

s between these two lines, linearly stable otherwise. In the same

gure we plot also in colour the ratio ω B / ω 0 , which is constant

long these lines, with the colourbar on the right. 
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The phase between heat release rate and the pressure is the

argument of the complex exponential in (15) : 

φqp = φψ 

0 
− τψ (ω − ω 0 ) (A.18)

= φψ 

0 
− τψ ω 0 

(
ω B 

ω 0 

− 1 

)
(A.19)

We remind the reader that φqp is the flame phase at the frequency

ω = ω B of the thermoacoustic mode, which does not match φ0 be-

cause the latter is the flame phase calculated at ω = ω 0 . The phase

φqp is presented in Fig. 5 b. 

Appendix B. Mathematical aspects of the method of averaging 

We substitute (29) into (28) , and add (28a) multiplied by

ie i (ωt+ ϕ j ) ω and (28b) multiplied by −e i (ωt+ ϕ j ) . We obtain 

ω 

2 − ω 

2 
0 

2 

A j e 
2 i (ωt+ ϕ j (t)) + ω 

(
ϕ 

′ 
i (t) + 

ω 

2 

− ω 

2 
0 

2 ω 

)
A j (t) + . . . 

. . . iωA 

′ 
j (t) = −e i (ωt+ ϕ j (t)) f j (t, A 1 (t) , A 1 (t) , . . . ) (B.1)

where f depends on the fast time variable t and on the slow vari-

ables, which are the amplitudes A 1 (t) , A 2 (t) , A 1 (t − τ ) , A 2 (t − τ )

and the phases ϕ 1 (t) , ϕ 2 (t) , ϕ 1 (t − τ ) , ϕ 2 (t − τ ) . Note that f is pe-

riodic in its direct dependence on t , with period 2 π / ω. We apply

first order averaging as discussed by Sanders and Verhulst [89] : we

approximate the slow variables as constant in the period of oscil-

lation 2 π / ω and time-average both sides of (B.1) . The first term on

the left hand side has period π / ω and vanishes. We are left with: (
ϕ 

′ 
i (t) + 

ω 

2 

− ω 

2 
0 

2 ω 

)
A j (t) ω + iωA 

′ 
j (t) (B.2)

≈ − 1 

2 π/ω 

∫ t+ π/ω 

t−π/ω 
e i (ωs + ϕ j (t)) f j (s, A 1 (t) , . . . ) ds 

In the integral on the right hand side, the delayed slow variables

such as A 1 (t − τ ) are approximated as A 1 ( t ) since the delay τ is

assumed to be of the same order as the period of oscillation, i.e.

small compared to the time scale of the slow variables, as dis-

cussed by Wahi and Chatterjee [94] and Saha et al. [95] . We will

relax this assumption later in Section 5 . 

We then evaluate the right hand side RHS j of (B.2) . We take

the constant term e iϕ j (t) out of the integral, introduce the point

z = e iωs on the complex unit circle and change the integration vari-

able from s to z , obtaining a closed path integral on the unit circle

around the origin: 

RHS j = −e iϕ j (t) 1 

2 π i 

∮ 
f j (z, A 1 (t) , . . . ) dz 

= −e iϕ j (t) Res z=0 [ f j ] (B.3)

The term f j (z, A 1 (t) , . . . ) is a Laurent polynomial in z , and is then

holomorphic everywhere except at z = 0 , so that in the last pas-

sage above we applied the residue theorem. The residue is the

coefficient of 1/ z in the expression of f j . The right hand side of

(B.2) divided by ω for j = 1 evaluates to 

g(A 1 , A 2 , ϕ) ≡ RHS 1 
ω 

= −e iϕ 1 (t) 

ω 

Res z=0 [ f 1 ] 

= 

1 

2 

iA 1 

(
βe iτω − α

)
− . . . 

. . . 
3 

32 

iA 1 κω 

2 e iτω 
(
A 

2 
2 e 

2 iϕ + 3 A 

2 
1 + 2 A 

2 
2 

)
(B.4a)

where ϕ is the difference between the phases of the first and sec-

ond oscillator, ϕ ≡ ϕ 1 − ϕ 2 , and the expression for g 2 is obtained

similarly. In particular one finds 

RHS 2 
ω 

= g(A 2 , A 1 , −ϕ) (B.4b)
We divide both sides of (B.2) by ω, substitute (B.4) , and obtain

he equations for the time evolution of the slow variables of the

wo oscillators: 

ϕ 

′ 
1 (t) + 

ω 

2 

− ω 

2 
0 

2 ω 

)
A 1 (t) + iA 

′ 
1 (t) = g(A 1 , A 2 , + ϕ) (B.5a)

ϕ 

′ 
2 (t) + 

ω 

2 

− ω 

2 
0 

2 ω 

)
A 2 (t) + iA 

′ 
2 (t) = g(A 2 , A 1 , −ϕ) (B.5b)

ith ϕ ≡ ϕ 1 − ϕ 2 . This dynamical system is in terms of the vari-

bles { A 1 , A 2 , ϕ1 , ϕ2 } and can present solutions where both

hases ϕ1 and ϕ2 , in the limit t → ∞ , present a common oblique

symptote, i.e. the two oscillators undergo the same shift of

heir oscillation frequency. However, these solutions are not fixed

oints of (B.5) since ϕ 

′ 
j 
(t) � = 0 . These solutions are however fixed

oints of an equivalent system, in terms of the variables x =
 A 1 , A 2 , ϕ, ϕ avg ≡ (ϕ 1 + ϕ 2 ) / 2 } , which is presented in (30) . 

ppendix C. Slow flow equations for the method of multiple 

cales 

We report in (C.1) the expressions introduced in (35) and ob-

ained with the method of multiple scales: 

 = 16 

(
α2 + 

(
4(ατ + 1) ω 

2 
L − α2 

)
cos ( 2 τω L ) 

+2(ατ (ατ + 2) + 2) ω 

2 
L + 2 α(ατ + 2) ω L sin ( 2 τω L ) 

)
L = −16 ω L ( α − β cos ( τω L ) ) ( α sin ( 2 τω L ) 

+ 2 ω L ( ατ + cos ( 2 τω L ) + 1 ) ) (C.1a)

 A (A 

2 
1 , A 

2 
2 , ϕ) = 3 ω 

3 
L 

(
2 ω L 

(
A 

2 
2 cos (2 ϕ) + 3 A 

2 
1 + 2 A 

2 
2 

)
× cos ( τω L ) ( ατ + cos ( 2 τω L ) + 1 ) 

+ sin ( 2 τω L ) ( cos ( τω L ) 
(
αA 

2 
2 cos (2 ϕ) + 3 αA 

2 
1 

+ 2 αA 

2 
2 − 2 A 

2 
2 ω L sin (2 ϕ) 

)
−αA 

2 
2 sin (2 ϕ) sin ( τω L ) ) 

)
(C.1b)

 ϕ (A 

2 
1 , A 

2 
2 , ϕ) = 6 ω 

3 
L sin (ϕ) cos ( τω L ) 

(
2 

(
A 

2 
1 − A 

2 
2 

)
sin (ϕ) 

× sin ( τω L ) ( α sin ( τω L ) + 2 ω L cos ( τω L ) ) 

+ 

(
A 

2 
1 + A 

2 
2 

)
cos (ϕ) ( α sin ( 2 τω L ) 

+ 2 ω L ( ατ + cos ( 2 τω L ) + 1 ) ) 

)
(C.1c)

 ϕ avg 
(A 

2 
1 , A 

2 
2 , ϕ) = ω L 

(
sin ( 2 τω L ) ( α sin ( τω L ) + 2 ω L cos ( τω L ) ) 

×
(
15 

(
A 

2 
1 + A 

2 
2 

)
κω 

2 
L − 32 β + 32 α sec ( τω L ) 

)
+3 

(
A 

2 
1 + A 

2 
2 

)
κω 

2 
L cos (2 ϕ) sin ( 2 τω L ) 

×(α sin ( τω L ) + 2 ω L cos (τω L )) − 3 

(
A 

2 
1 − A 

2 
2 

)
×κω 

2 
L sin (2 ϕ) cos ( τω L ) ( α sin ( 2 τω L ) 

+ 2 ω L ( ατ + cos ( 2 τω L ) + 1 ) ) 

)
(C.1d)
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