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ABSTRACT 
 
A successful low-order model introduced by Schuermans et 
al. [19], Noiray et al. [13] studies thermoacoustic instabilities 
assuming the fluctuating heat release rate ! to be in phase 
with the acoustic pressure !, by neglecting the component of 
! out of phase with !. In this investigation we remove this 
hypothesis and consider a model in which, if ! peaks at time 
!, ! will peak at a later time ! + !. We generalize the delay ! 
as the local slope of the flame phase response in the vicinity 
of the acoustic mode of interest with natural frequency !!. 
We present an alternative, simpler formulation of the 
problem and show that the low-order governing equations 
presented in [19,13] are actually the time derivative of it. We 
will first consider systems where two degenerate azimuthal 
modes oscillate, and then prove that most results apply also 
to systems where only one longitudinal mode oscillates. 

In the linear regime, we show that the system has a 
higher linear growth rate than the model where the part of ! 
not in-phase with ! is neglected. This effect is larger for 
larger values of the product !!!, with !! being the natural 
frequency of oscillation of the acoustic system. We also 
discuss how the local slope of the flame phase response plays 
a role in (de) stabilizing the thermoacoustic system. 

We then discuss in the nonlinear regime how to apply 
the method of averaging and the method of multiple 
timescales to this nonlinear problem, in particular accounting 
for the varying frequency of oscillation of the system, and 
validate the results with extensive numerical simulations. 
The resulting equations allow us to discuss the implications 
that a non-zero ! has on the capabilities of a successful 

method of growth-rate extraction of Noiray and Schuermans 
[15]. We present mathematical evidence suggesting that, 
within the limits of certain approximations, the method 
should identify a good estimate of the growth rate despite the 
simplified assumptions, in line with the past experience of 
Bothien et al. [2]. 

 
See the end of the paper for a nomenclature. 

1 INTRODUCTION 
 
A successful state space low-order model for azimuthal 
thermoacoustic instabilities introduced by Schuermans et al. 
[19], and then further discussed by Noiray et al. [13], studies 
the dynamics of two dominant modes that behave like two 
oscillators coupled by the fluctuating heat release rate !. In 
this manuscript we neglect the effect of the transverse 
acoustic field on !, as studied previously by Ghirardo and 
Juniper [9] and assume that ! depends only on the 
longitudinal acoustic field in the mean flow field direction. 
We also do not study the general case of a discrete number of 
flames, each modelled in terms of a generic flame describing 
function as carried out by Ghirardo et al. [10], and assume 
that the number of burners is large enough so that ! can be 
approximated as homogeneous in the azimuthal direction, 
and the nonlinearity consists of a fundamental cubic 
saturation. We focus instead on the effect of the delay ! 
between pressure and heat release rate response, and more 
specifically on the local slope of the flame phase response in 
the vicinity of the acoustic frequency of the system. In 
particular, we want to answer the following questions: 



• what is the effect on the frequency and the amplitude of
oscillation, both in the linear and nonlinear regime?

• how do we apply successfully two vastly used nonlin-
ear methods, accounting for the delay and the resulting
change of the natural frequency of oscillation?

The answer to the first question will provide good practical in-
sight into the role of the local slope of the flame response on
the stability of the system. The answer to the second ques-
tion and the resulting equations are crucial for the application
of a whole body of work [12] and citations therein that aims
to extract thermoacoustic linear growth rates, which in turn
are often engineering design parameters in industry, e.g. for
acoustic damper and liner design.

The manuscript is organised as follows. In §2 we briefly
characterize the problem. In §3 we carry out the linear analy-
sis, and discuss the boundary of stability of the system. In §4
we carry out the nonlinear analysis of the problem and discuss
amplitudes and frequencies of the limit cycles. Both sections
§3 and §4 are structured so that the mathematical discussion
comes first, and the physical interpretation and results can be
understood by a reader starting reading at §3.2 and §4.5 re-
spectively. In §5 we discuss some implications of a non-zero
for the growth rate extraction procedures.

2 BRIEF DERIVATION

Low-order models of azimuthal instabilities usually describe
the system as a damped wave equation, with the fluctuating
heat release rate q as a source term. The nondimensional equa-
tions are Noiray et al. [13], Ghirardo and Juniper [9]:
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In (1) ↵ is a positive damping coefficient, p(t, ✓) is the fluctuat-
ing pressure, u(t, ✓) is the fluctuating velocity in the azimuthal
direction, with ✓ being the azimuthal angle in the periodic do-
main [0 , 2⇡). We focus on a rotationally symmetric system
in the azimuthal direction ✓, i.e. we assume that u, p, q do not
have any direct dependence on ✓. A discussion of the direct
dependence on ✓ of the equation can be found in Noiray et al.
[13]. A discussion of the effect of a discrete rotation group of
symmetry, instead of full rotational symmetry, can be found in
Ghirardo et al. [10].

We approximate the solution of (1) with a superposition of
the two excited degenerate thermoacoustic modes, which at
the flames positioned have shapes cos(n✓) and sin(n✓). As
discussed in Ghirardo and Juniper [9] we can write:

(
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where here and in the following the prime denotes a time
derivative, and n is the azimuthal wavenumber of the thermoa-
coustic mode we are studying. By substituting (2) into (1) and

by applying spatial averaging we obtain the equations:
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where we introduce the spatial averaging operator for the
generic function m(✓) as

hqim(t) =
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⇡

Z
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0

q(✓, t)m(✓)d✓ (4)

2.1 FLAME MODEL

We model the fluctuating heat release rate q as a nonlinear,
time-invariant operator of the acoustic axial fluctuating veloc-
ity uax at the flame inlet. The reasoning behind this is that an
acoustic fluctuation of the longitudinal velocity at the burner
induces a perturbation of the fuel/air mixture fraction, and/or
of the local flow field. This second perturbation is amplified
by means of flow instabilities and/or modulates the swirl in
swirling flames, and both mechanisms lead to perturbations of
the flame response. For a review of these and other mecha-
nisms, refer to Lieuwen [11], Ducruix et al. [5], Candel et al.
[4]. The resulting transfer function typically involves a set of
time delays ⌧k, of standard deviations �2

k, and interaction in-
dices nk, all real valued quantities:
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(5)

The fluctuating axial velocity uax can be expressed as a linear
transfer function of the pressure p in the annular chamber, as
long as only one mode, or two degenerate modes, oscillate, as
discussed in detail in Ghirardo et al. [10]. In particular one can
write

ûax(!)

p̂(!)
= An(!) = �⇤(!)ei⇠(!) (6)

where An(!) is the admittance of the whole part of the com-
bustor upstream of the section where uax is measured, calcu-
lated for the n-th azimuthal instability. From (5) and (6) it
follows that
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(7)

Despite the quite complicated expression of (7), this trans-
fer function typically exhibits a gain with a certain number
of bumps1 as function of the frequency, and a phase that de-
creases with frequency. This holds both in the linear and non-
linear regime, see e.g. Noiray et al. [14] for a matrix burner
and Ghirardo et al. [8] for a swirl burner. This means that
in the neighbourhood of the natural frequency !

0

of the az-
imuthal mode of interest equation (7) can be simplified to:

q̂(!)

p̂(!)
= �e�i( +⌧!) for ! close to !

0

, 2 [�⇡,⇡) (8)

1sequence of local maxima and minima alternating along the frequency
axis
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where ⌧ is an equivalent time delay and describes the local
slope of the phase response close to !

0

and  is an offset
of phase, and we choose a constant real valued gain � with
frequency because in the general case there is no established
trend, i.e. it can either grow or decay with frequency due to the
bumps mentioned earlier. � is the linear gain of the flame re-
sponse driving the oscillations. In the time domain, for  = 0
we can write that q = �p(t � ⌧), while for  6= 0 one must
formally introduce a linear time invariant operator Q such that
q = Q[p(t � ⌧)]. In the following we simplify the discussion
by setting  = 0, and generalize the results later. This allows
us to interpret ⌧! as the phase between q̂ and p̂. In the time
domain and in the nonlinear regime, we can write

q(t) = �p(t � ⌧) � p(t � ⌧)3 (9)

In (9) we choose the nonlinear saturation first proposed by
Noiray et al. [13], which is fundamental and simple, to fo-
cus on the effect of ⌧ . In (9)  is a positive value constant
describing how fast with amplitude the flame response satu-
rates. We refer the reader to Ghirardo et al. [10] to look at
the effect of a generic nonlinear saturation of the flame on the
spinning/standing nature and multistability of limit cycle solu-
tions.

2.2 MODEL EQUATIONS

By substituting (9) into (3) we obtain
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where !
0

= n and the function f is defined as:

f(a, a⌧ , b⌧ ) ⌘ a⌧


� � 3

4


�
a2

⌧ + b2

⌧

�� � ↵a (11)

where we denote with a subscript ⌧ a delayed quantity, e.g.
a⌧ (t) = a(t � ⌧). An example of a time domain simulation
of the oscillators (10) is presented in Fig. 1, where in a) the
continuous thin lines are the fast oscillating signals ⌘

1

(t) and
⌘
2

(t), and the thick lines are their slowly varying amplitudes
of oscillation A

1

(t) and A
2

(t). In Fig. 1.b we present the
instantaneous frequency of oscillation of the same simulation
with a black line. To link this study with the existing literature,
we remark that one can take the time derivative of (10) and
obtain:
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where the function ⇣j(t) ⌘ ⌘0
j(t) was introduced. By setting ⌧

to zero in (12) one recovers the equations discussed in Noiray
et al. [13]. One disadvantage of the second formulation (12)
of the problem is the additional time-derivative of the function
f that includes the heat release rate and leads to the study of
the problem with mixed terms ⇣k

j (t)⇣ 0
j(t) in the equations.

We mention that any stochastic contribution qs(t) to the heat
release rate appears on the right hand sides of (10) after spatial

averaging, and hence should appear in (12) as time derivative,
and not outside of the time derivative as presented in Bonci-
olini et al. [1]. We stick to the formulation in terms of equa-
tions (10) in the following.

2.3 RANGE OF THE PARAMETERS {↵,�, ⌧!
0

}
In this manuscript all the analytical expressions are valid for
{�,↵, ⌧} 2 R+

3 unless otherwise indicated. It is however
important to estimate the range of typical values of these pa-
rameters in thermoacoustics. We will present graphically the
results only for this range of values, with the exception of Fig-
ures 2, 3.a and 3.b. We now proceed in estimating ranges for
the damping and driving coefficients ↵,� and of ⌧ .

We consider a reasonable thermoacoustic instability with a
ratio �/!

0

of the growth rate to the natural frequency of oscil-
lation of 0.05. We also assume that the system without a flame
has an overall level of acoustic damping such that the growth
rate of the system when the flame’s response is artificially shut
off is �0.042. We then consider the case of a zero time delay
⌧ , for which the growth rate of the system is (� � ↵)/2 as
discussed in [13]. The two assumptions lead to the value of
↵/!

0

= 0.08 and �/!
0

= 0.18, and a ratio �/↵ = 2.25, in
line with values reported in Noiray et al. [13], Bothien et al.
[2]. Accounting for more unstable flames, we then decide to
study in the following the system for �/↵ 2 [0 , 3] as a rele-
vant range for thermoacoustic instabilities, while we will keep
constant the value of ↵/!

0

= 0.08 as just calculated. We fix
↵ to this value because the plots are more sensitive to �/↵ and
⌧!

0

than to the value of ↵, and varying all three parameters
at the same time would require three dimensions. We will re-
consider the effects of the absolute value of ↵ at the end of
§3.2.

For estimating the range for ⌧!
0

, we consider an example
of a thermoacoustic mode at f = 300Hz, subject to a con-
vective time delay of ⌧ = 5 ms. This leads to a product of
⌧!

0

⇡ 3⇡. Notice moreover that the superposition of different
time delays often leads to a steeper phase response in certain
frequency ranges. In these ranges, the equivalent time delay
⌧!

0

discussed just after (8) would be even larger. Accounting
for longer time delays and larger frequencies of oscillation, in
the following we study the system for ⌧!

0

2 [0 , 8⇡].

3 LINEAR ANALYSIS

In this section we study the boundary of linear stability of (10).
We proceed by retaining only the linear terms in (10a) and
(10b), and obtain:

⌘00
j (t) + ↵⌘0

j(t) � �⌘0
j(t � ⌧) + !2

0

⌘j(t) = 0 j = 1, 2 (13)

We substitute ⌘
1

(t) = e(�+i!)t into (13) where � is the growth
rate and ! the real valued angular frequency of oscillation, and
obtain the characteristic equation. We then split the equation

2the modelling carried out in Ghirardo et al. [10] of an annular combustor
led to a �/! = �0.05 for the first azimuthal mode when the flame was off
i.e. �,  = 0
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Figure 1: a) Example of time domain simulation in terms of the original system of equations (continuous lines), after applying
the method of multiple scales (MMS, dashed lines) and after applying the averaging method (AVG, dotted lines). In this case we
choose ⌧!

0

= ⇡/8 6= 0 and this leads to a non-trivial response: the two amplitudes Aj undergo a non-monotonic transient where
A

1

overshoots the final amplitude and A
2

grows more slowly than A
1

; b) Dependence of the frequency of oscillation on time: ! is
the calculated instantaneous frequency of oscillation extracted from the time series ⌘j , while !AV G and !MMS are the predicted
instantaneous frequencies using the method of multiple scales (MMS) and the averaging method (AVG)

into real and imaginary parts and after some manipulation ob-
tain:

� cos(⌧!)e��⌧ � ↵

2
=�


1 +

�⌧

2
sinc(⌧!)e��⌧

�
(14a)

!2 � !2

0

+ �! sin(⌧!)e��⌧ =�2 + ↵� � �� cos(⌧!)e��⌧

(14b)

We study for which parameters {↵,�, ⌧} 2 R+

3 the system
is neutrally stable, i.e. there exist real-valued solutions !L of
the system of equations (14) when setting the growth rate � to
zero:

� cos (⌧!L) � ↵ = 0 (15a)

!2

L � !2

0

+ �!L sin (⌧!L) = 0 (15b)

We carry out with rigour the analysis of the implicit dispersion
relation !L = !L(�/↵, ⌧!

0

) in the following section §3.1.
The impatient reader will find the results of the linear stability
analysis presented in §3.2.

3.1 DETAILED DERIVATION

By studying as a function of � the left and right hand sides of
(14a), we find that there exists only one solution for the growth

rate �, and that it is positive if � cos (⌧!) � ↵ > 0. It follows
that equation (15a) defines the boundary of stability, with the
system being unstable if the left hand side is positive. We also
observe from (15b) that when on the boundary, if ⌧ is zero, !L

matches the natural frequency of oscillation !
0

. We observe
that if (↵,�, ⌧) provide a real-valued solution !L of (15), then
(↵,�, ⌧k) is a solution too, with

⌧k =⌧ + 2k⇡/!L , k 2 N+. (16)

We can then initially limit the search of solutions restricting
the domain of ⌧ to

⌧ 2

� ⇡

!L
,
⇡

!L

◆
(17)

and then exploit (16) to generate the other solutions. Since
!L is close to the natural frequency of the system, !

0

, the
domain (17) is bounded. Moreover, since ↵ and � are positive,
equation (15a) allows us to further restrict the domain so that
the cosine term is positive:

⌧ 2

� ⇡

2!L
,
⇡

2!L

◆
(18)
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This is in line with the Rayleigh criterion [16]: the phase dif-
ference between q and p must be in the range (�⇡/2,⇡/2) to
cause instability.

The domain (18) allows negative values of ⌧ , though a neg-
ative value in the system does not make physical sense. We
investigate negative solutions nonetheless, because they lead
to positive solutions ⌧k by the application of (16). The neu-
trality of the solutions is defined by (15a), from which we can
calculate the reduced linear driving �L at the onset of instabil-
ity as a function of ↵ and ⌧ :

�L = ↵ sec(⌧!L), (19)

The frequencies of the neutrally stable solutions are the solu-
tions !L of (15b). We substitute � from (19) into (15b) and
obtain:

h(⌧,!L) ⌘ !2

L � !2

0

+ ↵!L tan(⌧!L) = 0 (20)

Since we cannot solve !L as a function of ⌧ from (20) an-
alytically, we present in Fig. 2 a contour plot of h/!2

0

, in
the restricted domain (18). The solution of (20) is the implicit
curve satisfying h/!2

0

= 0, reported with the black line. There
are two solutions !L for each value of ⌧ if ⌧̂ < ⌧ < 0, with
⌧̂!

0

⇡ �1.13. This black line shows the effect of ⌧!
0

on
the frequency shift, !L/!

0

, on the border of neutral stabil-
ity. We present in Fig. 3.a the same curve h = 0, but colour
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Figure 2: Contour plots of h from equation (20). On the black
line h = 0, i.e. equation (15) is satisfied and the system is
neutrally stable. The two horizontal red lines (±20% in fre-
quency) highlight the approximate range for thermoacoustic
applications

it based on the value of the ratio �/↵ that makes the system
neutrally stable and zoom to the range of parameters typical
of thermoacoustic applications discussed in §2.3. We present
in Fig. 3.b the same information but invert the vertical axis
and the colourmap. We then recover the full boundary of neu-
tral stability by applying the transformation (16) to values of

(�/↵, ⌧!
0

) from Fig. 3 and present it in Fig. 4. For compari-
son with the previous work of Schuermans et al. [19], Noiray
et al. [13], we now make the same assumption and set to zero
the part of the heat release rate q out of phase with p. The
sin(.) term in equations (15b) disappears, and the equations
(15) simplify to

� cos (⌧!L) � ↵ = 0 (21a)

!2

L � !2

0

= 0 (21b)

In equations (21) we find that regardless of the values of ↵,�
and ⌧ the linear frequency of oscillation at the neutral bound-
ary of stability coincides with the natural acoustic frequency
of the unperturbed oscillator:

(
� = ↵/cos(⌧!

0

)

!L = !
0

(22)

These results are presented in Fig. 3 and 4 with black lines.

Generalization for  6= 0 One looks for the solution of (15)
where the additional term � appears in the equations:

� cos (⌧!L �  ) � ↵ = 0 (23a)

!2

L � !2

0

+ �!L sin (⌧!L �  ) = 0 (23b)

One can generate a solution for (23) from the solution of (15).
In particular, we observe that if {↵,�, ⌧ =0!

0

} lead to a neu-
trally stable frequency !L/!

0

in (15), then {↵,�, ⌧ !
0

} lead
to the same frequency !L/!

0

, with ⌧ !
0

calculated as:

⌧ !
0

= ⌧ =0!
0

+
 

!L/!
0

(24)

This leads to a constant shift of the minima of the troughs of
Fig. 4.a and of the zeros of 4.b, originally at multiples of 2⇡
for  = 0, to  plus multiples of 2⇡, since the term !L/!

0

in
(24) is one at the minima. Moreover on each of the troughs, we
find from (24) that points at larger ⌧!

0

than the minimum are
shifted to values larger than  because !L/!

0

< 1 there, and
points at smaller ⌧!

0

than the minimum are shifted to values
smaller than  because !L/!

0

> 1. The solutions for a few
selected values of  is reported in Fig. 5, where the shift of
+ is clearly visible, while the additional shift just mentioned
is not visible with the naked eye.

3.2 DISCUSSION

We present in Fig. 4.a the stability map of the system, where
the ranges of the horizontal and vertical axes are representative
of a class of thermoacoustic systems as discussed in §2.3. The
ratio �/↵, where � is the linear driving coefficient of the flame
response and ↵ the acoustic damping coefficient, is reported
with a coloured line as a function of the equivalent delay ⌧!

0

introduced in (8), where !
0

is the natural acoustic frequency
of the system and ⌧ is the slope of the flame phase response
close to !

0

. Above this boundary of stability the system is
linearly unstable and the region is coloured with grey. The
colour of the boundary is the linear frequency of oscillation
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(a) frequency of neutral stability (b) ratio �/↵ of driving over damping at neutral stability

Figure 3: a) The coloured line is the frequency of the neutrally stable modes as a function of ⌧!
0

. This is the black line presented
first in Fig. 2, coloured with the values of �/↵ that make the system stable. b) stability map of the system. This is the same data
of a) but swapping the vertical axis with the colormap. The coloured line represents the values of �/↵ as a function of ⌧ on which
the system is neutrally stable. We study the system for positive values of ⌧!

0

, where the linearly unstable region is reported in
gray. The same analysis on the system obtained by neglecting the component of q not in phase with p as done in Schuermans et al.
[19], Noiray et al. [13] is reported with black lines in frames a) and b)

!L/!
0

of the system and the respective colormap is reported
on the right.

Where ⌧!
0

is a multiple of 2⇡ we have that ! = !
0

and q
is exactly in phase with p, and the required ratio �/↵ to make
the system neutrally stable equals unity and is minimum, as
expected from the Rayleigh criterion. As the value of ⌧!

0

gets further from a multiple of 2⇡, the strength of the flame
response required to de-stabilize the system increases, and the
curve �/↵ takes the form of a trough with the minimum at
each multiple of 2⇡.

Moreover, the width of the troughs increases along the in-
creasing multiples of 2⇡, so that the boundary of stability ap-
proaches the horizontal asymptote �/↵ = 1 as ⌧!

0

! 1.
This means that for a given system with a fixed ratio of �/↵,
flames governed by large time delays, i.e. equivalently flames
with a steep phase response in the vicinity of the acoustic fre-
quency !

0

, are more likely to be unstable than flames governed
by smaller time delays, and the overall system stability is less
affected by the phase response of the flame close to the fre-
quency of oscillation. In other words, for a fixed flame gain,
a flame with a steeper phase response is more likely to trigger
an acoustic mode, because the troughs in Fig. 4.a are wider.
This can be intuitively be understood by the fact that, if the
flame has a steep phase response at the resonance frequency
!

0

, even a little shift of the frequency from !
0

leads to strong
variations of the phase between q and p.

We present the frequency of oscillation !L also in Fig. 4.b.
Where ⌧!

0

is a multiple of 2⇡ the frequency !L matches the
natural frequency of oscillation !

0

. For values of the time
delay ⌧!

0

< ⇡/2 the linear frequency of oscillation !L is
smaller than the natural frequency of oscillation !

0

. We ob-
serve that for values of �/↵ < 3 we can see a linear frequency
shift of about 10%3 even for small values of ⌧!

0

, and that this

3in line with experiments, see Boudy et al. [3] for evidence for an academic
test rig

shift is larger at large values of ⌧!
0

because the branches are
less steep for large ⌧!

0

. This will be confirmed in §4 also in
the nonlinear regime, and shows how assuming that the fre-
quency of oscillation of the system matches the natural fre-
quency of oscillation !

0

is a rough approximation.
We now consider what happens when ⌧!

0

is ⇡ plus a mul-
tiple of 2⇡, and consider for example the case of ⌧!

0

= 7⇡.
We observe that the phase difference between q and p at !

0

is ±⇡, hence the Rayleigh criterion at the natural acoustic fre-
quency !

0

is negative and the system cannot oscillate at !
0

.
One is then tempted to conclude that the acoustic mode at !

0

will be stable and pulsations will not be observed. What actu-
ally happens is that for values of �/↵ & 2.5 the part of q not
in phase with the pressure p is strong enough to lead to a fre-
quency shift |!L �!

0

| large enough so that the absolute value
of the phase difference between q and p at !L is smaller than
⇡/2 and then leads to a positive Rayleigh contribution, desta-
bilizing the system. This happens in this case on two branches,
which in Fig. 4.a intersect at (⌧!

0

,�/↵) ⇡ (7⇡, 2.5), and in
Fig. 4.b belong to frequencies smaller and larger than !

0

at
⌧!

0

= 7⇡. When more than one branch is possible, numerical
evidence suggests that the system converges to the one with
higher growth rate. This least favourable case of ⌧!

0

being ⇡
plus a multiple of 2⇡ should have clarified the common mis-
conception that an acoustic mode at !

0

will not pulsate if the
phase difference between flame response and pressure at !

0

is
not favourable. Indeed, it is quite likely that �/↵ will be large
enough and/or the local phase slope ⌧!

0

will be steep enough
to make the same acoustic mode at !

0

pulsate at a frequency
!L where it is unstable.

This analysis shows that given a combustor with a fixed ran-
dom but physical set of acoustic modes {!k

0

, k = 1, 2 . . .},
flames governed by large values of ⌧ , e.g. characterized by
long time delays, are situated to the right of Fig. 4 where
the boundary of stability is closer to the line �/↵, and: i) are
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Figure 4: a) boundary of neutral stability as function of the local slope ⌧!
0

of the flame phase response. The coloured line is the
ratio of the linear driving � over to the acoustic damping ↵ to make the system neutrally stable. The linearly unstable region is
filled in grey. b) The coloured line is the frequency of neutral stability !L/!

0

on the boundary described in a). In both frames the
black line is the simpler solution obtained neglecting the part of the heat release rate q not in phase with the pressure p as assumed
in Schuermans et al. [19], Noiray et al. [13]

more likely to make the system pulsate because the troughs are
broader; ii) are more likely to lead to larger frequency shifts
from the natural acoustic frequencies {!k

0

}. We advise the
reader however to not jump to the hasty conclusion that shorter
values of ⌧ lead to fewer pulsations. For example longer con-
vective time delays from the injection point lead to better mix-
ing which reduce in turn the amplitude of equivalence ratio
fluctuations at the flame, and longer flames have a larger stan-
dard deviation � in (7). Both factors usually lead to a smaller
equivalent gain � in (8).

In the same Figs. 4.a and 4.b we present with black lines
the result obtained neglecting the part of heat release rate out
of phase with the pressure as assumed in Schuermans et al.
[19], Noiray et al. [13], so that one can compare the results
with and without assumption. In Fig. 4.a we observe that the
black troughs are exactly the same and simply shifted by 2⇡
on the horizontal axis ⌧!

0

, so that the error on the boundary
of instability increases for larger values of ⌧!

0

. A zoom for
small values of ⌧!

0

can be found in Figs. 3. As expected, in
Fig. 4.b we show how the predicted frequency of oscillation
matches !

0

at all linearly unstable conditions.
As mentioned at the end of §2.3, the plots presented here are

for a fixed value of ↵/!
0

= 0.08 that was estimated as repre-
sentative of thermoacoustic systems. We mention that for a
fixed value of the ratio �/↵, smaller(larger) values of ↵ and

hence � lead to smaller(larger) frequency shifts of ! from !
0

for a fixed value of ⌧!
0

in Fig. 4.b. Physically, this has the
simple interpretation that if the acoustics are little damped and
little amplified, the purely acoustic frequency is little affected
by them. In Fig. 5 we present the generalization for  6= 0
in (8) for 4 different values of the phase  . The major and
expected change regards a shift of the troughs of  on the hor-
izontal axis, and does not affect any of the considerations made
on Fig. 4, which is easier to interpret. An interesting conclu-
sion that one can draw from Fig. 5 is that there exist flames
that will make the system pulsate regardless of their phase re-
sponse. For example a flame with ⌧!

0

= 7⇡ and �/↵ & 2.5
corresponds to a point in Fig.5 that is always unstable regard-
less of the value of  .

4 NONLINEAR ANALYSIS

In this section we apply two nonlinear methods to predict an-
alytically the amplitudes and frequencies of oscillation. As
compared to previous work on the topic, the major novelty is
in the fact that we explicitly calculate how the instantaneous
frequency of oscillation varies as a function of the amplitudes
of oscillations, instead of fixing it to a constant value, as pre-
sented for example in Fig. 1.b The section is structured so that
a reader mostly interested in the results can directly start read-
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Figure 5: Same as Fig. 4 but without colormaps and for different values of the phase response  introduced in (8): black ( = 0,
reference line), magenta ( = ⇡/2), blue/red ( = ±⇡), cyan ( = �⇡/2). The black curves here are the coloured curves of Fig.
4.

ing at §4.5. In §4.1 we apply the method of averaging, and in
§4.3 we apply the method of multiple scales, and validate both
numerically in §4.4.

4.1 METHOD OF AVERAGING

In this section we apply first order averaging to the model,
as defined and discussed in Sanders and Verhulst [18]. We
rewrite (10) as a first order system (xj , yj) ⌘ (⌘j , ⌘0

j):

x0
j(t) = yj(t) (25a)

y0
j(t) = �!2

0

xj(t) + fj (25b)

where f
1

= f(y
1

(t), y
1

(t � ⌧), y
2

(t � ⌧)) and f
2

=
f(y

2

(t), y
2

(t � ⌧), y
1

(t � ⌧)). We introduce the change of
variables (xj , yj) ! (Aj ,'j):

(
2xj(t) = Aj(t)ei(!t+'j(t)) + c.c.
2yj(t) = i!Aj(t)ei(!t+'j(t)) + c.c.

(26)

where c.c. denotes the complex conjugate of the expression to
its left. We then substitute (26) into (25), and add (25a) multi-
plied by iei(!t+'j)! and (25b) multiplied by �ei(!t+'j). We
obtain

!2 � !2

0

2
Aje

2i(!t+'j(t)) + !

✓
'0

i(t) +
!

2
� !2

0

2!

◆
Aj(t) + i!A0

j(t) =

� ei(!t+'j(t))fj(t, A1

(t), A
1

(t), . . .) (27)

where f depends on the fast time variable t and on the
slow variables, which are the amplitudes A

1

(t), A
2

(t), A
1

(t�
⌧), A

2

(t�⌧) and the phases '
1

(t),'
2

(t),'
1

(t�⌧),'
2

(t�⌧).
Notice that f is periodic in its direct dependence on t, with pe-
riod 2⇡/!. We apply first order averaging as discussed by
Sanders and Verhulst [18]: we approximate the slow variables
as constant in the period of oscillation 2⇡/! and time-average
both sides of (27). The first term on the left hand side has

period ⇡/! and vanishes out. We are left with:
✓
'0

i(t) +
!

2
� !2

0

2!

◆
Aj(t)! + i!A0

j(t) ⇡ (28)

� 1

2⇡/!

Z t+⇡/!

t�⇡/!
ei(!s+'j(t))fj(s, A1

(t), . . .)ds

In the integral on the right hand side, the delayed slow vari-
ables such as A

1

(t � ⌧) are approximated as A
1

(t) since the
delay ⌧ is assumed to be of the same order as the period of
oscillation, i.e. small compared to the time scale of the slow
variables, as discussed by Wahi and Chatterjee [20], Saha et al.
[17]. We will relax this assumption later in §5.

We then evaluate the right hand side RHSj of (28). We take
the constant term ei'j(t) out of the integral, introduce the point
z = ei!s on the complex unit circle and change the integration
variable from s to z, obtaining a closed path integral on the
unit circle around the origin:

RHSj = �ei'j(t) 1

2⇡i

I
fj(z, A

1

(t), . . .)dz (29)

= �ei'j(t)Resz=0

[fj ] (30)

The term fj(z, A
1

(t), . . .) is a Laurent polynomial in z, and
is then holomorphic everywhere except at z = 0, so that in
the last passage above we applied the residue theorem. The
residue is the coefficient of 1/z in the expression of fj . The
right hand side of (28) divided by ! for j = 1 evaluates to

g(A
1

, A
2

,') ⌘ RHS
1

!
= �ei'1(t)

!
Resz=0

[f
1

] (31a)

=
1

2
iA

1

�
�ei⌧! � ↵

� � . . .

. . .
3

32
iA

1

!2ei⌧!
�
A2

2

e2i' + 3A2

1

+ 2A2

2

�

where ' is the difference between the phases of the first and
second oscillator, ' ⌘ '

1

� '
2

, and the expression for g
2

is
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obtained similarly. In particular one finds

RHS
2

!
= g(A

2

, A
1

, �') (31b)

We divide both sides of (28) by !, substitute (31), and obtain
the equations for the time evolution of the slow variables of
the two oscillators:
✓
'0

1

(t) +
!

2
� !2

0

2!

◆
A

1

(t) + iA0
1

(t) =g(A
1

, A
2

, +') (32a)
✓
'0

2

(t) +
!

2
� !2

0

2!

◆
A

2

(t) + iA0
2

(t) =g(A
2

, A
1

, �') (32b)

with ' ⌘ '
1

� '
2

. This dynamical system is in terms of the
variables {A

1

, A
2

,'
1

,'
2

} and can present solutions where
both phases '

1

and '
2

, in the limit t ! 1, present a com-
mon oblique asymptote, i.e. the two oscillators undergo the
same shift of their oscillation frequency. However, these so-
lutions are not fixed points of (32) since '0

j(t) 6= 0. These
solutions are however fixed points of an equivalent system, in
terms of the variables x = {A

1

, A
2

,','avg ⌘ ('
1

+'
2

)/2}:

A0
1

=
A

1

2
(� cos(⌧!) � ↵) � 3

32
A

1

!2(A2

2

cos(⌧! + 2') + . . .

. . . 3A2

1

cos(⌧!) + 2A2

2

cos(⌧!)) (33a)

A0
2

=
A

2

2
(� cos(⌧!) � ↵) � 3

32
A

2

!2(A2

1

cos(2'� ⌧!) + . . .

. . . 2A2

1

cos(⌧!) + 3A2

2

cos(⌧!)) (33b)

'0 =
3

16
!2 sin(')

�
A2

1

cos('� ⌧!) + A2

2

cos('+ ⌧!)
�

(33c)

'0
avg +

!

2
=
!2

0

2!
� 1

2
� sin(⌧!) +

3

64
!2(A2

2

sin(⌧! + 2') � . . .

. . . A2

1

sin(2'� ⌧!) + 5(A2

1

+ A2

2

) sin(⌧!)) (33d)

In (33), the first three equations describe the amplitudes and
the synchronization of the two oscillators: the fixed points of
these three equations in the three variables {A

1

, A
2

,'}, which
depend parametrically in !, are the synchronized solutions of
the system. The role of the last equation (33d) will be com-
mented in the next section §4.2.

For a fixed value of ! there are only two stable solutions
among the fixed points of the system of equations (33a),(33b)
and (33c). These stable solutions are spinning waves and have
amplitudes:

(
A

1

= A
2

= 2p
3!

q
��↵ sec(⌧!)



' = ±⇡/2
(34)

4.2 THE CHOICE OF !

We recall that ! defines the period 2⇡/! over which we carry
out the time averaging, so that we should always choose ! to
match the instantaneous frequency of oscillation of the oscil-
lator in order to average exactly over one period of oscillation.
When applying the method of averaging, one often assumes

that the frequency of oscillation ! is close to the natural fre-
quency of oscillation !

0

of the unperturbed oscillator, and ap-
proximate ! ⇡ !

0

. This assumption is often carried out earlier
in the analysis, by fixing ! = !

0

in (26). We have however
observed in §3 that the frequency of oscillation !L of the neu-
trally stable, linearized system departs from !

0

, and is most
noticeably dependent on ⌧ , as in Fig. 4.b.

We can improve the choice of ! from !
0

by using equation
(33d), and choosing ! such that the mean average phase 'avg

is a fixed point of the system too. This also means that the
frequency of averaging ! of the system matches the instanta-
neous frequency of the two oscillators, since we have that

!inst
avg =

@

@t

(!t + '
1

(t)) + (!t + '
2

(t))

2
= ! + '0

avg(t) (35)

This leads to an equation for !:

!2 =!2

0

� �! sin(⌧!) +
3

32
!3(A2

2

sin(⌧! + 2') � . . .

. . . A2

1

sin(2'� ⌧!) + 5(A2

1

+ A2

2

) sin(⌧!)) (36)

In the linear regime Ai ! 0, and from (36) we recover the lin-
ear dispersion relation (15b), with the difference that this time
it is not calculated on the boundary of instability, i.e. equation
(15a) does not hold.

In the general nonlinear regime before saturation, the fre-
quency of oscillation shifts from this value and it is dependent
on the two amplitudes A

1

and A
2

and also on ' as described
by (36). We numerically integrate in time the first three equa-
tions (33), and at each timestep calculate the instantaneous fre-
quency ! which satisfies (36). An example of a simulation is
reported in Fig. 1, where A

1

, A
2

and ' are reported as dotted
lines.

In the nonlinear regime but at the converged limit cycle so-
lution, we can calculate the frequency !LC of oscillation by
substituting (34) into (36), and obtain:

h(⌧,!LC) ⌘ !2

LC � !2

0

+ ↵!LC tan(!LC⌧) = 0 (37)

We observe that this matches equation (20) for !L, which is
the frequency of the neutrally stable system obtained by re-
ducing the linear driving coefficient � until neutral stability
is reached4. In other words, the frequency at the limit cycle
matches the frequency of the linear system obtained by suit-
ably reducing the flame response to make it neutrally stable.

To numerically integrate in time the system of equations
(33), at each time step we numerically solve equation (36) for
!, and then calculate the right hand sides of (33) and proceed
at the next time step.

We now show an example of the predictions of equation
(35) in a time domain simulation. In Fig. 1.b we compare
the instantaneous frequency ! as extracted from the original
oscillators and the solution !AV G of (36) calculated as a func-
tion of the instantaneous amplitudes Aj . We have overall very
good agreement, while we observe some small error in the
fully linear and fully nonlinear regime.

4indeed, � is reduced when it is calculated in (19)
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In the fully linear regime at the left of Fig. 1.b the error
between the frequency !AV G and the frequency of the lin-
earized system is due to an inherent limitation of the method
of averaging, which assumes that ⌘j and @⌘j/@t are exactly
out of phase. This is exact at the limit cycle if one neglects
higher order harmonics, while the error made is largest where
the growth rates are largest, which in this case is at the onset
of oscillation. This error is however marginal and smaller than
0.02% in this time simulation. In the fully nonlinear regime at
the right of Fig. 1.b the error between the frequency !AV G and
the predicted frequency of oscillation !L is due to the fact that
we are neglecting the contribution of higher order harmonics
that in this case makes the amplitudes Aj just 1.5% smaller
than the prediction AAV G. This in turn affects the amplitudes
in (36), leading to an error however smaller than 0.02%.

We add a final note on the formal correctness of this deriva-
tion where the frequency of oscillation ! depends on time.
The time-derivatives of {⌘j , ⌘0

j} are O(1) quantities i.e. are
governed by time t. The method of averaging assumes that the
slowly varying amplitudes and phases are O(") quantities, i.e.
are governed by time T ⌘ "t. In equation (27) we keep the
terms that are O(") i.e. we keep the time derivatives of the
slow flow variables. In the passage to obtain (27), and more
clearly in the passage in (35), we are implicitly assuming that
the time derivative of ! can be neglected, i.e. we assume that
@!/@t is a term that scales with O("2) and neglect it. We
present evidence that this approximation is reasonable in Fig.
§1.b, where we observe that !AV G is rather close to the recon-
structed value of ! especially in the regions where @!/@t 6= 0.

4.3 THE METHOD OF MULTIPLE SCALES

We apply the method of multiple scales. Because of the re-
quired brevity of this publication, we do not report the deriva-
tion that can be found in Ghirardo [7]. One obtains the set of
equations:

A0
1

=A
1

L � NA(A2

1

, A2

2

, +')

D
(38a)

A0
2

=A
2

L � NA(A2

2

, A2

1

, �')

D
(38b)

'0 =
N'(A2

1

, A2

2

,')

D
(38c)

'0
avg =

N'avg (A2

1

, A2

2

,')

2D
(38d)

where the expressions of L, NA, N', N'avg and D are re-
ported in appendix §A, and the method predicts the instan-
taneous frequency of oscillation as !MMS(t) = !L +

d'avg

dt .
In the first two equations, L/D is a linear growth coefficient
and the term NA/D is responsible for the nonlinear saturation
of the amplitudes. The third equation governs the synchro-
nization of the two oscillators, and depends only on nonlinear
terms, since it is proportional to . The right hand side of (38d)
is the frequency shift of the two oscillators, which depends on
the amplitude of oscillation.

There are only two stable solutions among the fixed points
of the system of equations (38a),(38b) and (38c) and they
match exactly the solutions (34) of the method of averaging.

The mean frequency of oscillation of the limit cycle is !L,
because once we substitute (34) into (38d) we find that the nu-
merator on the right hand side evaluates to zero. This means
that the method of multiple scales predicts that the frequency
of oscillation at the limit cycle matches !L, matching the pre-
diction of the method of averaging.

For completeness, we present the instantaneous frequency
of oscillation using the method of multiple scales as !MMS(t)
in Fig.1.b. The performance of this estimate is overall similar
to the method of averaging, slightly better in the linear regime
at small amplitudes.

4.4 ACCURACY OF THE NONLINEAR SOLUTION

We tested the quality of these analytical solutions for a series
of numerical simulations using the solver PYDELAY [6]. In
particular we fix ↵ = 0.08 and run simulations of (10) on a
fine grid with 153 values of �/↵ equispaced between 0 and 3
and 337 values of ⌧!

0

equispaced between 0 and 8, for a total
of 51561 simulations. We started the numerical integration at
t = 0, with a history function defined for t 2 [0 , �⌧ ] that is
oscillatory. We then extract the amplitude and the frequency of
the solutions once the numerical code has converged to a limit
cycle. We report the amplitude in Fig. 6.a, and the frequency
in Fig. 6.b. The agreement is overall very good, except a small
discrepancy for small values of �/↵, where the contour line of
the numerical solution at A = 0.051 is slightly jagged and
slightly underpredicts the analytical solution in a few regions.
This is due to the fact that we extracted the amplitudes from
the numerical solutions too early in time, before the system
had fully converged to the limit cycle. This is corroborated by
the fact that for a constant ↵, smaller values of �/↵ make the
system more weakly nonlinear, leading to longer time-scales
for the evolution of the slow flow variables. On the horizontal
line �/↵ = 3 at the border of the investigated parameter space,
where the system is more strongly nonlinear, the error between
the predicted and measured amplitude was found to be smaller
than 2.2%. On the same line, the error in the prediction of the
frequency of oscillation was smaller than 0.08%.

4.5 DISCUSSION

Using the method of averaging and the method of multiple
scales we have obtained two sets of equations, respectively
(33) and (38). Despite the fact that the two sets of equations
differ, they share the same limit cycle solution, oscillating at
the frequency !L of the neutrally stable system5, and at the
amplitude described by (34). As discussed in §4.4, the ana-
lytical solutions were validated against numerical simulations
with excellent agreement, confirming that they characterize
correctly the limit cycle solution. We present in Fig. 6 the
amplitudes and frequencies of oscillation of the limit-cycle so-
lution. As expected, in Fig. 6.a the amplitude grows from a
value of 0 on the boundary of neutral stability as the ratio �/↵
increases along vertical lines of constant ⌧!

0

. Importantly,
the smooth amplitude contour of the system in the nonlinear
regime confirms that all the practical considerations discussed

5defined as the solution of (15b)
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Figure 6: Nonlinear analysis. a) Comparison of the saturated amplitude and frequency at the limit cycle (l.c.) extracted from
the numerical integration of the original system of delayed coupled oscillators described by equations (10) (in colour) and of the
analytical solution (black lines). a) Amplitude of oscillation A

p
!

0

. b) Frequency of oscillation !/!
0

. In both a) and b) the black
lines were chosen to be at the same levels as the colour contour boundaries. The two coincide almost exactly showing that the
analytical solution matches the results of the numerical integration of the original system.

in §3.2 hold validity in the nonlinear regime. We observe in 6.b
that along vertical lines the frequency of oscillation at the limit
cycle is constant, i.e. is independent of �/↵. This means that
systems with different values of � start with a different, linear
frequency of oscillation as in Fig. 1.b, but they all converge
to the same frequency of oscillation !L. This happens for
this specific case, because the chosen nonlinearity in (9) has a
phase response that does not depend on amplitude. Both meth-
ods predict the evolution of the frequency of oscillation with
time, as exemplified in Fig. 1.b. In the general case, sources
(flames) and sinks (dampers) have a phase response that de-
pends on the amplitude, leading to larger frequency shifts from
the linear to the nonlinear regime. It is especially in these situ-
ations that one should take into account in the time domain the
dependence of the frequency of oscillation on the amplitudes,
as done here in (36).

5 LINEAR GROWTH RATE ESTIMATION

In this section we show how the system of equations assumed
by Noiray [12] with a zero delay ⌧ , resembles in a certain
mathematical sense the original system of equations with a
non-zero delay ⌧ . If this is the case, then one can safely use
the methods discussed in [12] for linear growth rate estima-
tion. We leave open the question of the identification of the
delay ⌧ and the case of azimuthal instabilities and focus on

a thermoacoustic system with a single mode. When carrying
out the projection of the equations (1) on a single mode ⌘

1

and
assuming the flame compact in space, one obtains

⌘00
1

(t)+!2

0

⌘
1

(t) = f(⌘0
1

(t), ⌘0
1

(t � ⌧)),

with f(a, a⌧ ) = a⌧ (� � a2

⌧ ) � ↵a (39a)

The averaged equations for this system are obtained similarly
and are:

A0
1

=A
1,⌧

⇥
⌫ � µA2

1,⌧

⇤
(39b)

'0
1

= � �

2
sin(⌧!) + µA2

1,⌧ +
!02

2!
� !

2
(39c)

where we introduce
(
⌫ = (� cos(⌧!) � ↵)/2

µ = 3 cos(⌧!)!2/8
(40)

Notice how the amplitude A
1

on the right hand side of (39b)
is delayed, i.e. A

1,⌧ (t) = A
1

(t � ⌧). In other words, we are
not here assuming as done just after (28) that the delay ⌧ is
small compared to the time scale of A0

1

, because this section
focuses in detail on the growth rate of A

1

6. Remarkably, the
limit cycle solution of (39) has the same amplitude A and the

6Notice that this does not affect any of the results of §4.1
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same frequency !L of the solution of the problem with two
modes7, meaning that the nonlinear results of Fig. 6.a apply
also to a single mode:

A =

r
⌫

µ
=

2p
3!L

r
� � ↵ sec(⌧!L)


,

with !L solution of (20) (41)

We observe that the frequency of oscillation !(t) is close to
!L and in the following assume that !(t) = !L 8t in (39b)
and discard the study of the equation for '

1

.
Noiray [12] identifies a system of equations like (39a) but

with ⌧
(E)

set to zero:

⌘00
1

(t)+!2

0(E)

⌘
1

(t) = f(⌘0
1

(t), ⌘0
1

(t � ⌧)),

with f(a) ⌘ a(�
(E)

� 
(E)

a2) � ↵a (42a)

with the respective slow flow equation:

A0
1

=A
1

⇥
⌫
(E)

� µ
(E)

A2

1

⇤
(42b)

We then want to understand if there exists a set of coefficients
{⌫

(E)

, µ
(E)

,!
0(E)

} such that the dynamics of the equivalent
(hence the subscript

(E)

) system (42b) matches the dynamics
of the original system (39b), so that the system identification
would identify it. We first observe that the frequency of os-
cillation of(42a) is well approximated by !

0(E)

, so that it has
to be !

0(E)

= !L. We then observe that in principle the dy-
namics of (39b) and (42b) cannot match because the first is
of delayed differential type, while the second is of ordinary
differential type. We can however approximate the Taylor ex-
pansion of the delayed term to the first order in ⌧ :

A
1,⌧ = A

1

(t � ⌧) ⇡ A
1

(t) � ⌧A0
1

(t) + O(⌧2) (43)

By substituting (43) into (39b) and after some manipulation
we obtain:

A0
1

(1 + ⌫⌧ � 3µ⌧A2

1

) = ⌫A
1

� µA3

1

(44)

Despite the fact that (44) does not have the same structure as
(42b) in the nonlinear regime, one can expand in Maclaurin
series the expression of A0

1

in powers of A
1

, truncate it to the
third order, and match suitably the coefficients {⌫

(E)

, µ
(E)

}.
In the linear regime the two systems are equivalent:

�(E) = ⌫
(E)

⇡ ⌫

1 + ⌧⌫
(45)

where �(E) is the growth rate of (42a).
A similar argument can be applied with the method of mul-

tiple scales. In the linear regime the two modes A
1

and A
2

are
decoupled in (38) and the linear coefficient matches the case
of one thermoacoustic mode only. In this case the system is
already of ordinary differential type, and one expects that

�(E) = ⌫
(E)

⇡ L

D
(46)

We find good qualitative agreement in Fig. 7 between the
exact growth rate of (39a) in blue, the growth rate (45) in red,

7solutions for the two modes were presented in (34)

and the growth rate (46) in green, with the discrepancies to
be attributed to the not perfect accuracy of the two nonlinear
methods. As a comment, we observe in Fig. 7 a reduction as
a function of ⌧!

0

of all three growth rates. This effect of the
delay ⌧ can be observed in eq. (45) and is additional to the
direct effect of the phase ⌧! between q and p accounted for in
the cos(⌧!) term in the definition (40) of ⌫. To conclude, we
observe that equations (42) used by Noiray [12], with suitable
coefficients {⌫

(E)

, µ
(E)

}, match either the third order Maclau-
rin expansion of the equations (44) of the truncated method of
averaging, or the equations of the method of multiple scales for
one mode, under certain mathematical approximations. Then
it follows that the system identification method [12] applied to
timeseries of the original system (39) with delay should pro-
duce good growth rate estimates of the original system, within
the limits of these approximations. The mismatch in Fig. 7
shows that some of these approximations play a limited role.
This approximate equivalence between the models with and
without delay is in line with past experience (Bothien et al.
[2]) with growth rate predictions on a model with a time delay,
but requires further numerical evidence.

6 CONCLUSIONS

We discuss the effect of the local nondimensional slope ⌧!
0

of
the flame phase response in the vicinity of the frequency !

0

of
the considered acoustic mode of the system, both in the linear
and nonlinear regime. The results apply both to systems with
either only one mode oscillating, or two degenerate azimuthal
modes oscillating. In §2 we carry out a brief derivation of the
problem, introduce ⌧ as the local flame phase response slope,
and compare this formulation with the literature.

In §3 we provide new insights regarding the stability of ther-
moacoustic systems. We show for example that: 1) flames
with a steep phase response are more likely to trigger pulsa-
tions and to lead to larger frequency shifts from !

0

; 2) a flame
responding in anti-phase with the pressure p at the frequency
!

0

can still make the system unstable; 3) a flame can destabi-
lize an acoustic mode regardless of its phase response at !

0

.
In §4 we adjust the method of averaging to account for

a frequency of oscillation ! that does not match the natural
frequency of oscillation !

0

of the system. This leads to the
derivation of an equation that describes the time evolution of
the instantaneous frequency of oscillation !(t) as a function
of the amplitudes of oscillation of the two modes, which will
prove especially useful in situations where a part of the system,
e.g. a flame or a damper, has a phase response that depends on
the amplitude. Both nonlinear methods lead to excellent re-
sults in the typical range of the parameters that characterize
thermoacoustic oscillations. The nonlinear results of Fig. 6
extend the validity of the considerations of §3 in the nonlinear
regime.

In §5 we present a conjecture suggesting that one may ne-
glect the part of heat release rate q in quadrature with the pres-
sure p when estimating the linear growth of a time series, with
this line of reasoning. Despite the fact that one cannot as-
sume that the nonlinear frequency of oscillation ! matches the
natural acoustic frequency of oscillation !

0

, one can instead
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Figure 7: Linear growth rates (g.r.) of: the original equations of the system (39) with delay (blue), the truncated equations of the
method of averaging (red), the equations of the method of multiple scales (green). These results are for �/↵ = 2,↵/! = 0.08.

average over the nonlinear frequency of oscillation !L, and
reconstruct the linear growth rate of an equivalent thermoa-
coustic system where the natural acoustic frequency of oscil-
lation is !L, and the part of heat release rate q in quadrature
with the pressure p is neglected. The slowly varying equations
governing this equivalent system are shown to match, within
the boundaries of a set of mathematical approximations, the
slowly varying equations of the original system, hence sug-
gesting that the identified growth rate using the equations of
the equivalent system should be close to the exact growth rate
of the original system, as previous experience of Bothien et al.
[2] suggested. A quantitative discussion of this conjecture will
require further numerical validation.

Nomenclature

0 the prime denotes time derivative of the preceding quantity

ˆ the hat denotes the Fourier transform of the underlying
quantity

↵ equivalent acoustic damping coefficient, appearing in (1b)

� linear flame response gain as function of p, as in |q| / �|p|
⌘0

j amplitudes of the acous. pres. of the 2 azim. modes as in
(2), for j = 1, 2

 nonlinear saturation coefficient, appearing in (9)

! angular frequency

!
0

acoustic frequency of oscillation when the flame and the
damping are virtually shut off

!L frequency of the system if the flame response gain � is
virtually decreased until the system is neutrally stable, i.e.
� = 0. We prove that !L is also the frequency of the
limit-cycle solution for this studied case.

!LC frequency of oscillation at the limit cycle

 phase response at ! = 0 of the fit (8) around !
0

of the
flame response

� growth rate

⌧ equivalent time delay of the transfer function q̂/p̂ as intro-
duced in (8), e.g. local slope of of the phase response of
such transfer function at frequencies close to !

0

.

✓ azimuthal coordinate, ✓ 2 [0, 2⇡)

a h

Aj Slowly varying amplitudes of oscillations, introduced in
(26)

n azimuthal order of the mode, e.g. n = 3 refers to the third
azimuthal

n⌘j amplitudes of the acous. vel. of the 2 azim. modes as in
(2), for j = 1, 2

p acoustic pressure, suitably nondimensionalized

q fluctuating heat release rate, suitably nondimensionalized,
often called flame response

u acoustic velocity in the azim. direction, suitably nondi-
mensionalized

uax acoustic velocity in the axial direction, typically long the
axis of the burner, suitably nondimensionalized
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A SLOW FLOW EQUATIONS

We report in (47) the expressions introduced in (38):

D = 16
⇣
↵2 +

�
4(↵⌧ + 1)!2

L � ↵2

�
cos (2⌧!L) + 2(↵⌧(↵⌧ + 2) + 2)!2

L + 2↵(↵⌧ + 2)!L sin (2⌧!L)
⌘

L = �16!L (↵� � cos (⌧!L)) (↵ sin (2⌧!L) + 2!L (↵⌧ + cos (2⌧!L) + 1)) (47a)

NA(A2

1

, A2

2

,') = 3!3

L

⇣
2!L

�
A2

2

cos(2') + 3A2

1

+ 2A2

2

�
cos (⌧!L) (↵⌧ + cos (2⌧!L) + 1)

+ sin (2⌧!L) (cos (⌧!L)
�
↵A2

2

cos(2') + 3↵A2

1

+ 2↵A2

2

� 2A2

2

!L sin(2')
�

� ↵A2

2

sin(2') sin (⌧!L))
⌘

(47b)

N'(A2

1

, A2

2

,') = 6!3

L sin(') cos (⌧!L)
⇣
2

�
A2

1

� A2

2

�
sin(') sin (⌧!L) (↵ sin (⌧!L) + 2!L cos (⌧!L))

+
�
A2

1

+ A2

2

�
cos(') (↵ sin (2⌧!L) + 2!L (↵⌧ + cos (2⌧!L) + 1))

⌘
(47c)

N'avg (A2

1

, A2

2

,') = !L

⇣
sin (2⌧!L) (↵ sin (⌧!L) + 2!L cos (⌧!L))

�
15

�
A2

1

+ A2

2

�
!2

L � 32� + 32↵ sec (⌧!L)
�

+ 3
�
A2

1

+ A2

2

�
!2

L cos(2') sin (2⌧!L) (↵ sin (⌧!L) + 2!L cos (⌧!L))

� 3
�
A2

1

� A2

2

�
!2

L sin(2') cos (⌧!L) (↵ sin (2⌧!L) + 2!L (↵⌧ + cos (2⌧!L) + 1))
⌘

(47d)
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