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Thermoacoustics of Can-Annular
Combustors
Can-annular combustors consist of a set of independent cans, connected on the upstream
side to the combustor plenum and on the downstream side to the turbine inlet, where a
transition duct links the round geometry of each can with the annular segment of the tur-
bine inlet. Each transition duct is open on the sides toward the adjacent transition ducts,
so that neighboring cans are acoustically connected through a so-called cross-talk open
area. This theoretical, numerical, and experimental work discusses the effect that this
communication has on the thermoacoustic frequencies of the combustor. We show how
this communication gives rise to axial and azimuthal modes, and that these correspond to
particularly synchronized states of axial thermoacoustic oscillations in each individual
can. We show that these combustors typically show clusters of thermoacoustic modes
with very close frequencies and that a slight loss of rotational symmetry, e.g., a different
acoustic response of certain cans, can lead to mode localization. We corroborate the pre-
dictions of azimuthal modes, clusters of eigenmodes, and mode localization with experi-
mental evidence. [DOI: 10.1115/1.4040743]

Introduction

Can-annular combustors are common in heavy-duty land based
gas turbines. In this design, the air flows from the compressor out-
let to the combustor plenum. From there, the air stream splits into
N cans. Each can consists of a first approximation of a cylinder
that is connected upstream to the plenum and of one or more fuel
injector(s) and respective combustion zone(s) [1]. After the last
combustion zone, the hot gas flows into the turbine inlet. Since
the can cross section is circular and the inlet of the turbine is an
annular gap, a special transition duct is designed to suitably link
the two, as sketched in Fig. 1.

High frequency thermoacoustic instabilities are localized in the
regions close to the flame. As such, they are not specific of annu-
lar or can-annular types of combustors. We focus instead on low
frequency thermoacoustic instabilities, i.e., on frequencies below
the cut-on frequency of transversal modes in each can. While ther-
moacoustic modes in annular combustors have received ample
attention over the last decade [2–5], the same is not true for can-
annular systems. Krebs et al. [6] show that low frequency acoustic
modes are axial in each can, but particular attention is required
when one considers the acoustics in the N transition ducts, both
because of their complex geometry and because of the acoustic
communication occurring between adjacent transition ducts.
Land-based can-annular gas turbines have an even number N of
cans because of the common design of the combustor casing,
which comprises an upper and a lower part with a horizontal
flange inbetween. An odd number of cans would require fixing a
can at the flange location. We then consider in the following the
case of N even, but the methods and the results are rather similar
for the case of N odd, which is more common in aero-derivative
engines [7]. Kaufmann et al. [8] discuss how thermoacoustic
mode shapes differ between a single-can test rig and a model of a
quarter of an engine comprising four cans. More recently, Farisco
and coworkers have studied the acoustic cross-talk communica-
tion between neighboring cans [9–12]. We show in this paper that

the low frequency modes have certain peculiar features in
can-annular combustors that are related to this cross-talk
communication.

The Effect of Asymmetry section of the paper discusses the
effect of asymmetries in can-annular combustors. This has been
investigated for annular combustors by various groups (for
example, Refs. [2], [4], and [13–16]); however, to our knowl-
edge, these aspects have not been addressed yet for can-annular
configurations. Although both types of systems feature the same
nominal symmetry—a discrete rotational symmetry—a qualita-
tively different response to asymmetries can be expected. This is
associated with the relatively weak coupling between the indi-
vidual cans. In the present work, we will study asymmetry
effects based on an elementary network model for a can-annular
system, with a realistic transfer matrix for the can-to-can cou-
pling at the turbine inlet.

The Rotationally Symmetric Case

In this section, we assume that all cans are the same, i.e., that
the system has rotational and reflection symmetry. Typically, the
geometry of the cans is the same for all the cans, and the preferen-
tial clockwise or anticlockwise direction of the mean flow as it
enters the turbine stator plays a role in a part of the acoustic
domain that is acoustically compact in comparison with the wave-
length of interest. We will discuss later the effect of the loss of
this rotational symmetry.

Because of the rotational symmetry, according to Bloch theory
[14,17], the solutions in the frequency domain of the acoustic
pressure field p̂ in the N cans can be written in the form

p̂ðxÞ ¼ wðxÞeimh; m ¼ �N=2þ 1;…; 0; 1;…;N=2 (1)

where h is the azimuthal coordinate around the axis of discrete
rotational symmetry, the turbine rotor, and wðxÞ is periodic in h
with period 2p/N (i.e., w is identical in all cans). The nth can is
centered at the azimuthal position

hn ¼ n� 1ð Þ 2p
N

(2)
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in a frame of reference where the first can is at the origin. In Eq.
(1), the integer m is called the Bloch wavenumber, and in our
application, it is the azimuthal order of the solution, because in
time domain the solution pðx; tÞ ¼ p̂ðxÞeixt ¼ wðxÞeiðxtþmhÞ is a
spinning2 wave in the azimuthal coordinate h. For example,
m¼62 denote two counter-rotating spinning waves of azimuthal
order 2. All these modes appear in counter-rotating, degenerate
pairs, except for the mode m¼N/2 and m¼ 0 that are nondegener-
ate and are considered next.

In particular, for m¼ 0 we obtain an axial mode, while for
m¼N/2 we observe from Eq. (1) that the solution in the nth can is

p̂n xð Þ ¼ w xð ÞeiN
2

n�1ð Þ2p
N ¼ w xð Þei n�1ð Þp ¼ �1ð Þn�1

w xð Þ (3)

From Eq. (3), it follows that the solution for m¼N/2 changes sign
from one can to the next, i.e., the acoustic field of one can is in
anti-phase with respect to the acoustic field of its two neighboring
cans. For this reason, the mode m¼N/2 is called a push-pull
mode, in analogy with the change of sign.

One can look for solutions for a fixed value of m by studying
the solution w in Eq. (1) in one can only, by applying Bloch
boundary conditions at the interface between two neighboring
cans, i.e., at the two side zones with length Lgap in Figs. 1(a) and
1(c). This is discussed in the Transition Ducts’ Modeling section.
From the study of one can for all possible values of m, one can
calculate the response of all the cans accounting for all azimuthal
modes.

Transition Ducts’ Modeling. The Mach number is low in the
transition duct main cross section, typically below 0.2. We then
neglect low-Mach number effects in the volume and assume a
zero mean flow in the wave equation. From upstream to down-
stream, the cross section of a transition duct goes from circular to
approximately rectangular, as sketched in Fig. 1(a). In particular,
it broadens on the sides and it thins in the orthogonal direction as
presented in Figs. 1(b) and 1(c). This leads to an overall modest
change of the cross section area. Moreover, the axial progression
of this area change is particularly smooth because it is designed to
avoid flow separation. One can then study the effect of the slowly
varying cross section on the acoustics [18–20]. Because this
change of the cross section is modest and depends strongly on the
specific combustor, it is neglected in the following. We also
neglect the curvature upstream of the turbine inlet presented with the
center green line in Fig. 1(c) and neglect also the slight turn in the
azimuthal direction, as presented with the red line in Fig. 1(b). This
leads to the bidimensional, rectangular domain of Fig. 2(a). The
small effect of these geometrical approximations will be validated
later by comparing the results obtained on the exact 3D geometry of
a set of N¼ 12 real transition ducts and on their 2D equivalent
counterpart.

We focus instead on the cross-talk area where acoustic commu-
nication between transition ducts occurs, colored in gray in Fig. 1,
with an axial length Lgap.

We choose two nondimensional numbers describing the geome-
try. The first is the aspect ratio L/H of the 2D domain in Fig. 2(a).
The second is the ratio Lgap/H, which can be interpreted as the
strength of the can-to-can communication. The reference values
for the two numbers are presented in Table 1. When we later
investigate the effect of one nondimensional number, we keep the
other constant.

The Helmholtz number of the stator Hes¼ Lsx/c is typically
low for axial modes in heavy-duty gas turbines at the turbine inlet,
where x is the acoustic angular frequency of interest and c is the
speed of sound. This means that the first stator length Ls can be
assumed as acoustically compact as compared to the acoustic
wavelength 2pc/x of interest. Moreover, the Mach number is high
at the turbine inlet so that we can model the acoustic response of
the turbine inlet with a reflection coefficient with a fixed gain <1
and a zero phase response3 [22]. Since the focus is not on the tur-
bine inlet reflection, we fix a reflection coefficient gain equal to
unity, i.e., apply homogeneous Neumann boundary conditions for
the pressure field on the downstream end of the domain in
Fig. 2(a), and expect only a small quantitative effect when
accounting for a gain lower than 1, as found for example by
Bauerheim et al. [23]. We also neglect from the study the occur-
rence of entropy wave generation from the flame and their reflec-
tion at the turbine inlet [24] and references therein], assuming that
it plays a negligible role. The discussed modeling simplifications
lead to the bidimensional domain of the transition duct presented
in Fig. 2(a). On the black and red contours, we apply homogene-
ous Neumann boundary conditions, and on the blue contour,
Bloch boundary conditions

w x;H=2ð Þ ¼ w x;�H=2ð Þei2p
N m x 2 L� Lgap;L½ � (4)

where m is the azimuthal wavenumber and the domain spans a
distance H in the vertical direction in Fig. 2(a). The Helmholtz
equation is solved by discretizing the 2D domain on Chebyshev
nodes and expressing the solution as a truncated Chebyshev series
[25]. This spectral solution allows a very quick numerical calcula-
tion of the eigensolutions and in turn very quick sensitivity studies
on the governing parameters. The spectral solver has been verified
against a commercial finite element method solver.

Modes’ Shapes and Cans’ Synchronization. In this section,
we fix a number N¼ 14 of cans, present the theoretical results,
and validate them with engine data. We discuss the axial mode
m¼ 0, the push–pull mode m¼N/2¼ 7, and the second azimuthal
mode m¼ 2, in this order. The considerations that apply to the

Fig. 1 Geometry of a typical transition duct and the simplifications leading to the two-dimensional (2D) model, appearing ulti-
mately in Fig. 2(a). The communicating gap between two adjacent transition ducts is colored in gray, with an axial length Lgap.
(a) three-dimensional (3D) sketch of a transition duct, (b) front view of the air volume, and (c) side view of the air volume.

2That is traveling in the azimuthal direction at the speed of sound.

3One can account for finite Helmholtz number effects by extending the axial
domain by an equivalent end length correction [21], affecting only slightly the
results.
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case m¼ 2 apply also to the other degenerate modes m ¼
1; 3;…; 6 that are then not discussed in the following.

We present in Figs. 2(c) and 2(d) the first nontrivial axial4

mode, eigensolution of the problem for m¼ 0. We observe that
the wavelength k and the mode shape match the half-wavelength
acoustic mode of the duct, which is the solution of the problem
with homogeneous Neumann boundary conditions on the whole
boundary, i.e., for Lgap¼ 0. We present in Figs. 2(e) and 2(f) the
first push–pull mode. This mode has a pressure anti-node at the
upstream end of the transition duct in Fig. 2(e) and a quite clear
pressure node at the transition duct outlet on the right of the

domain, so that it resembles a quarter-wave mode of the whole 2D
duct. However, the acoustic velocity of this mode, presented in
Fig. 2(f), has a strong peak around the location where the gap
between cans starts. The acoustic velocity profile is a decreasing
function of the axial coordinate along the gap length, suggesting
that low order models should account for this strong gradient and
cannot assume that the component of the acoustic velocity normal
to the gap is constant along the gap.

For the axial mode, one easily observes by substituting m¼ 0
into Eq. (1) that the solution is the same in all the cans, and in par-
ticular, the phase of the mode is the same in the whole combustor,
so that all cans oscillate in phase. For a push–pull mode, we have
already discussed after Eq. (3) how adjacent cans should be in
opposition of phase.

After analyzing the axial (m¼ 0) and push–pull (m¼N/2)
modes, we now discuss the general azimuthal degenerate case
m ¼ 1;…;N=2� 1,5 which is harder to interpret because it gives
rise to complex-valued solutions. This is expected mathematically

Table 1 Typical proportions of the transition duct of Fig. 2(a)

Nondimensional number Reference value

Lgap/H 0.2
L/H 2

Fig. 2 (a) Geometry of the 2D model of the transition duct, simplified from the original geometry of Fig. 1. (b) Legend, com-
mon to the other four figures. ((c) and (d)) First nontrivial eigenmode of the studied geometry for an axial mode, i.e., m 5 0
(k 5 2L). Absolute value of the acoustic pressure on the left and absolute value of the acoustic velocity on the right. The solu-
tions of the axial case match the solutions of the problem with Neumann conditions applied over the whole boundary. ((e) and
(f)) same of (c) and (d) but for a push–pull mode, i.e., m 5 N/2 5 7, for a set of N 5 14 cans (k 5 4.26L). In (f), the acoustic velocity
has a strong increase where the gap starts and is inhomogeneous over the gap length.

4For the axial case only, there is also a trivial solution: a mode that is constant in
the whole domain at 0 Hz.

5The respective negative cases m ¼ �N=2þ 1;…;�1 are identical because of
the reflection symmetry.
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because the term on the right-hand side of the boundary condition
(4) is complex-valued, and physically because a spinning mode
rotates in the annulus just before the turbine inlet with a varying
phase in the azimuthal direction, and such phase is the argument
of the eigenmode. We plot the first eigenmode for m¼ 2 in Fig.
3(b), where the colored filling represents the phase and the gray
lines represent the absolute value. By exploiting Eq. (1) for m¼ 2,
we reconstruct from the solution of a single can of Fig. 3(b) the
solution in all the N¼ 14 cans, presented in Fig. 3(c). The phase is
approximately constant within each can and describes how all the
cans oscillate with the synchronization/phase pattern described by
the azimuthal order m.

We conclude this paragraph by presenting in Fig. 4 evidence of a
second-order azimuthal mode and of a push–pull mode based on
engine data. Following the same methodology of Ref. [26], we
present in Fig. 4(a) the phase pattern between pressure sensors
located at different azimuthal locations, i.e., different cans. The
pattern matches the predicted phase pattern presented in Fig. 3(c)

for a second azimuthal mode. Figure 4(b) presents a pulsation pat-
tern where adjacent cans oscillate out of phase, compatible with a
push–pull mode. Similar experimental evidence based on two cans
only is presented by Farisco et al. [12] in their Fig. 1. However, in
Fig. 4(b), some adjacent cans are not exactly out of phase, and we
observe some variation of the amplitude of the mode as a function
of the can number. We will reconsider these two features later.

Equivalent Reflection Coefficient. We now turn our attention
to the reflection coefficient R¼ g/f observed from the inlet of the
transition duct, sketched with the red line in Fig. 2(a). In particu-
lar, we discuss how a certain mode, either axial, azimuthal, or
push–pull, traveling downstream in one can with amplitude f, is
reflected back with amplitude g from the ensemble of the other
transition ducts. This can be calculated with a Green function
approach on the problem by expanding the Green function as a
truncated Galerkin series [27, §7.3]. This is a consolidated

Fig. 3 First eigenmode with azimuthal order m 5 2, for a set of N 5 14 communicating cans. Because the solution is
complex-valued, we use different colormaps for the absolute value and the phase angle, presented in the two legends in (a).
In (b), we present the solution in one can only: we observe that the phase is approximately constant on the cross section at
the upstream end of the transition duct, on the left, far from the cross-talk area. The amplitude decreases slightly from left to
right. In (c), we present the ensemble of all the 14 cans pulsating together for the mode in (b), reconstructed using Eq. (1).
The phase changes mostly at the cross-talk area and changes two times (since the azimuthal order m is 2) the quantity 2p
along the annulus. At the upstream end of each transition duct, the phase is approximately constant and the mode presents
a certain azimuthal phase pattern. The phase between two cans is the difference of the phase value between two locations.
Refer to Fig. 4(a) for experimental evidence of a second-order azimuthal mode like this one in an engine. (a) Legend for (b)
and (c). (b) First azimuthal m 5 2 mode in one can, pressure field. Legend in (a). (c) Phase in the 14 cans of the same mode of
(a). The first can from the left is the same appearing in (b).

Fig. 4 Experimental evidence of a second azimuthal and of a push–pull mode. The timeseries of 14 pressure sensors in a 14-
can can-annular combustor are processed at the frequency of one thermoacoustic instability. We present the amplitude of pul-
sation at that frequency on the left axis (in arbitrary units) and the phase difference on the right vertical axis at this frequency
in each can. The phase difference is between the first can and the nth can, so that the value is zero in the first can. (a) and (b)
refer to a different frequency of oscillation and a different operating condition. (a) The phase pattern corresponds to an azi-
muthal mode of order m 5 2 that is rotating, because the phase changes with an approximately constant slope twice the
amount of 2p moving along the annulus. This matches the theoretical prediction of Fig. 3(c). (b) The phase difference between
most adjacent cans is very close to 6p (m 5 N/2 5 7). We observe some variation of the amplitude between cans, characterized
as mode localization in The Effect of Asymmetry section of the paper.
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technique that requires the calculation of all the eigenmodes in the
frequency range of interest [28]. One obtains the impedance ~Zm

pm ¼ ~Zmum (5)

~Zm relates the pressure and the acoustic velocity at the inlet of one
transition duct, assuming all other ducts respond at the azimuthal
wavenumber m. The gain of the reflection coefficient Rm ¼
ðZm � 1Þ=ðZm þ 1Þ is trivially one at all frequencies because we
do not consider any acoustic losses. The phase of R for different
modes is presented in Fig. 5, for the nondimensional values fixed
in Table 1. We present the results as a function of the Helmholtz
number He, defined as

He ¼ Lx
c

(6)

When interpreting the results, it is useful to observe that He¼ p
corresponds to the frequency of the first nontrivial axial mode6 of
Fig. 2(c).

We observe that in the zero frequency limit, the ensemble of
transition ducts behaves like a wall for the axial mode (R¼ 1),
while it behaves as an open end for all azimuthal modes (R¼�1).
This is explained mathematically by the fact that the Galerkin
series of the axial mode has a Helmholtz mode at x¼ 0, while all
others do not. Modes with a high azimuthal wavenumber, e.g.,
m 2 f5; 6; 7g, have a very similar phase response. In the linear
regime, the solution is a superposition of these eigenmodes, which
are linearly independent and orthogonal. This means that if there
is an eigenmode at m¼ 6, very likely there exist also eigenmodes
at m¼ 5, 7 with a very close frequency of oscillation. We call a
set of modes with close frequencies a cluster, which we will fur-
ther substantiate later.

We present in Fig. 6 a comparison between the results obtained
with a finite element solver on a complex 3D geometry of 12 con-
nected transition ducts neglecting mean flow and results obtained
with the 2D model presented in this paper. The good agreement
confirms that the ignored geometrical features play a minor role
and further validates the 2D model.

Eigenfrequencies. In Fig. 7, we study the sensitivity of the
eigenfrequencies of the system with respect to the aspect ratio L/
H. We study the Helmholtz number He¼xL/c of the eigenmodes,
with the number defined so that the half-wave mode presented in
Figs. 2(c) and 2(d) has a Helmholtz number equal to p. We
observe that as the aspect ratio L/H increases, the frequencies of
the azimuthal modes slowly get closer to the frequency of the
push–pull mode, to one of the two horizontal asymptotes at
He¼ p/2 and He¼ 3p/2.

One can also make use of Fig. 7 to discuss the eigenfrequencies
of a whole can-annular combustor. In fact, a combustor where all
cans do not communicate on the upstream end at the plenum, or
such that this communication at the plenum plays a negligible
role, can be modeled with a set of noncommunicating cylinders
connected on the upstream end to the transition ducts. This is sim-
ply an increase of the length L of the computation domain of
Fig. 2(a). For example, the eigenfrequencies of a can combustor
with a can equivalent7 total length that is thrice the transition duct

Fig. 5 Phase of the equivalent reflection coefficient for the azi-
muthal modes for N 5 14 cans, calculated with reference cross
section at the red inlet of the transition duct of Fig. 2(a). The
Helmholtz number is defined as He 5 Lx/c.

Fig. 6 Validation of the geometrical simplifications for the 2D
model for N 5 12. The dashed lines are obtained from a fixed
complex 3D geometry, while the continuous lines are obtained
with the bidimensional model proposed in this paper, with the
nondimensional values estimated from the 3D geometry with-
out applying further corrections. The good agreement validates
the geometrical approximations made to map the complex 3D
geometry to the simpler 2D model.

Fig. 7 Sensitivity of the first two eigenfrequencies of a can
system as a function of the geometry aspect ratio L/H, for all
azimuthal wavenumber m, for N 5 14. We plot the Helmholtz
number of all the eigenmodes with He < 2p for each azimuthal
mode m, as a function of the two nondimensional parameters
governing can to can acoustic communication. As L/H
increases, the Helmholtz number of the azimuthal modes con-
verges slowly to p/2 and 3p/2 for the first two modes. For a fixed
value of L/H, the eigenfrequencies for m 5 5, 6, 7 are rather
close, forming a cluster. These modes are closer together the
larger is L/H.

6Because that mode has a wavelength k¼ 2L, see Fig. 2(c).

7The upstream part of the can is often colder, so that the equivalent length at the
temperature of the transition duct is longer than the actual geometrical length.
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length can be read in Fig. 7 by setting the aspect ratio L/H to 6.
We observe that the eigenfrequencies of the high azimuthal wave-
numbers m 2 f5; 6; 7g are all very close and form a cluster. One
can then expect that this cluster may occur together in experimen-
tal measurements, if one considers the system in a linear frame-
work, and subject to stochastic noise and weak nonlinear
saturation.

To experimentally validate this, from the pressure value pðnÞ at
a fixed axial location in the nth can, upstream of the transition
duct, we introduce the amplitude pm of the mth azimuthal mode
with the discrete Fourier transform

pm ¼
1

N

XN

n¼1

p nð Þe�imhn (7)

In Eq. (7), m ¼ �N=2þ 1;…; 0; 1;…;N=2 is the azimuthal
wavenumber, and the angle hn is defined in Eq. (2). We present in
Fig. 8 the spectrogram of the azimuthal modes of an engine. One
then observes the experimental evidence of the clusters just pre-
dicted, where the system selects certain azimuthal modes in which
it expresses larger acoustic amplitudes based on factors like the
flame response at the different modes’ frequencies, and the loss of
rotational symmetry of the system, as discussed in The Effect of
Asymmetry section.

Based on this evidence on thermoacoustic clusters, we look
again at the phase pattern for the push–pull mode presented in
Fig. 4(b). Because close to the push–pull mode frequency, there
are other modes of high azimuthal order that may also be excited,
the phase pattern of Fig. 4(b) for m¼ 7 is not as clean as if only
one mode is excited, as in Fig. 4(a). The nonuniform amplitude
pattern will be discussed later.

Transmission Between Cans. In the Eigenfrequencies section,
we have calculated the response of the set of N transition ducts to
the mth azimuthal mode. This has allowed to understand experi-
mental data, both in terms of frequencies and phase pattern, on a
system level. With the same information, one can also discuss the
acoustic response in terms of individual cans. In particular, one
considers the ensemble of N communicating transition ducts, with
N ports at the outlet of the N cans, i.e., at the inlet of the transition
ducts. The communication between these N ports can be written
as a many-to-many impedance between the pressures p �
½pð1Þ;…; pðNÞ� and the velocities u � ½uð1Þ; …; uðNÞ� at the inlet of
each transition duct

p nð Þ

qc
¼

XN=2

m¼�N=2þ1

pm

qc
eimhn ¼

XN=2

m¼�N=2þ1

~Zmumeimhn (8)

where Eq. (5) has been substituted in the second passage in Eq.
(8). In Eq. (8), q is the mean density of the gas and we use super-
script within round parentheses to refer to quantities calculated in
can space. One then writes the acoustic velocities of the azimuthal
modes um in terms of the velocities in the cans

p nð Þ

qc
¼

XN=2

m¼�N=2þ1

~Zm
1

N

XN

q¼1

u qð Þe�imhq

0
@

1
Aeimhn (9)

¼
XN

q¼1

1

N

XN=2

m¼�N=2þ1

~Zmeim hn�hqð Þ

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z nqð Þ

u qð Þ ¼
XN

q¼1

Z nqð Þu qð Þ (10)

Instead of characterizing the response in terms of pðnÞ and uðnÞ, we
can look at the problem in terms of the Riemann invariants f ðnÞ

and gðnÞ axial in each can, with f and g as sketched in Fig. 2(a).
They are related as gðxÞ ¼ TðxÞf ðxÞ, where TðnqÞ are calculated
from ZðnqÞ. The operator TðnqÞ expresses the transmission of the
downstream traveling wave f ðqÞ leaving the qth can and being con-
verted into an upstream traveling wave gðnÞ entering the nth can.
For n¼ q, we have that TðnnÞ expresses the reflection of f ðnÞ back
upstream to the same can. Both ZðxÞ and TðxÞ are circulant mat-
rices at a fixed frequency x and hold a series of elegant mathemat-
ical properties [29]. Physically, this happens because of the
rotational symmetry of the system, so that for example Tð3;8ÞðxÞ is
identical to Tð4;9ÞðxÞ because the system is invariant to a rotation
of the azimuthal frame of reference of one can. It follows that the
transmission matrix TðxÞ is fully defined by a single row or col-
umn, so we introduce

TðdÞ ¼ Tð1;dþ1Þ d ¼ 0; 1;…;N=2 (11)

which is the transmission of a wave f traveling downstream one
can to a can that is d cans apart. In particular for d¼ 0, we have
that Tð0Þf is the reflected wave in the same can, Tð1Þf the transmit-
ted wave in each of the two adjacent cans, and so on as sketched
in Fig. 9(a). Because of the mirror symmetry, we also have that

Fig. 8 Spectrogram of the timeseries of the azimuthal modes reconstructed from an engine. We can observe that more than
one azimuthal mode is active in a small range of frequencies, forming a cluster. Within the cluster, each mode peaks at a fre-
quency that increases with the azim. order m. The highest amplitude is not always in the same mode, and the system’s
energy appears to move randomly between the modes, with some statistical preference for the m 5 3, 4, 5 modes.
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TðkÞ ¼ TðN�kÞ, so that only N/2þ 1 elements of TðdÞ need to be
defined. It is then sufficient to characterize the transfer functions
from one can to itself and to the first N/2 cans in either clockwise
or anti-clockwise direction to fully describe T.

We present in Figs. 9(b) and 9(c) the transfer functions TðdÞ for
d ¼ 0; 1;…;N=2. We observe how the transmission is stronger to
cans that are close to the originating can. Moreover, in the zero
Helmholtz number limit, the gain of Tð0Þ goes to 1� 2/N, while
the gain of all other TðjÞ j 6¼ 0 goes to 2/N.

We observe that the reflection of a wave to the same can has a
phase response of p at the origin, i.e., the turbine inlet behaves as
an open duct if all other cans do not respond. This is not the case
in practice, and one should not draw conclusions on the system’s
dynamics based on the results of Fig. 9, because the synchronization
and interaction between the cans is not accounted for. One can
instead discuss the reflection of a wave back to the same can for all
possible synchronized states of the other pulsating cans, as presented
already in Fig. 5. One can then argue that the nonlinear, stochastic
response of all other cans will lie somewhere inbetween all the
responses of these possible synchronized states in a statistical sense.

The Effect of Asymmetry

In this section, we will introduce and study a simplified can-
annular system in terms of a network model. Based on this model
system, we will perform a modal analysis without and with flame
response to illustrate the general eigenstructure of this type of sys-
tem. We will furthermore assess the effect of asymmetry, originat-
ing from different flame responses in the cans, as this may occur
in an engine, on purpose or not.

Modal and stability analyses including the effect of asymmetry
have been conducted for annular combustors in various studies
(for example, see Refs. [2,15,30]); however, it can be expected
that a can-annular system exhibits qualitatively different eigen-
structures and response to asymmetries. This is because a can-
annular system can be interpreted as a system of weakly coupled,
nominally identical oscillators, from which it inherits certain
dynamical features. For an annular system, this interpretation is
not appropriate. The aspect that applies to both annular and can-
annular systems is the discrete rotational symmetry, at least nomi-
nally. Since both types of systems feature the same symmetry
group, eigenvalue degeneracy, and associated splits under asym-
metric perturbations are identical. However, as pointed out in the
Rotationally Symmetric Case section and is further elaborated on
below, the eigenfrequencies for can-annular systems come in clus-
ters (associated with a certain axial mode order in the cans), which
is a result of the weak coupling and cannot be found in annular
systems. As is well known in general modal theory [31], systems
with eigenvalue clusters (i.e., eigenvalues that are close) feature

high eigenfunction sensitivity toward perturbations. Therefore, a
can-annular system that is only slightly asymmetrically perturbed
may exhibit significant changes in the oscillation pattern, vastly
different from the mode structures in the symmetric case. We will
illustrate these effects on the basis of a model system introduced
next. To account for the can-to-can coupling in a realistic fashion,
we use the impedance/reflection coefficient matrix of the transi-
tion duct arrangement discussed in the Rotationally Symmetric
Case section.

The cans are modeled in a simplified manner through, starting
from the upstream end, as sketched in Fig. 10:

(1) a pressure-node impedance, representing the large volume
of the plenum, imposing a pressure-release condition;

(2) an L� f model [32], representing the burner;
(3) a flame transfer function;
(4) a duct, accounting for the acoustic propagation from the

flame to the transition duct.

For the L� f model, we choose an effective length of 10% of
the transition duct length, which is a realistic value for swirl gen-
erators; the damping coefficient f is set to zero here, as we do not
attempt any quantitative comparison with experimental data. The
can length is set equal to the transition duct length, for a total
length of 2L. The ratio of burned to unburned gas temperature is
set to 2.5, representative of the ratio of lean flame temperature to
compressor outlet temperature. The changes in molar mass and
ratio of specific heats from unburned to burned state are neglected.
We consider a can-annular system with 12 cans.

On the upstream side, the can models are uncoupled. This is
evidently a simplification, as there is acoustic communication
through the plenum. However, since the burner pressure loss is

Fig. 10 Sketch of the nth can of the can-annular model. The
can communicates with the others via the blue cross-talk area
where the f, g waves are sketched.

Fig. 9 (a) Sketch of the reflection/transmission transfer functions T(d) for an incoming traveling wave f. Each function T(d)(x)
is the transmitted Riemann invariant from one can to a can that is d cans apart. For example, T(0) is the reflection of a wave
propagating downstream of one can and being reflected to the same can, and T(3) can be interpreted for example as the trans-
mission of a wave traveling downstream can 4 and propagating upstream in can 7, or any other two cans that are 3 cans
apart. ((b) and (c)) Gain and phase of the transfer functions T(d) between all cans.
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typically significant, we expect that the dominant acoustic commu-
nication occurs through the gap in the transition duct at the turbine
inlet. We also neglect pairwise can-to-can communication through
cross-fire tubes, as these have typically small cross-sectional areas.

The eigenfrequencies and corresponding azimuthal modal pres-
sure distributions are obtained as follows. We use the impedance
matrix in can space, Z(x), as introduced in Eq. (10), whose nqth
element maps the acoustic velocity at the upstream end of the
transition duct in can q to the acoustic pressure in can n at the
same axial location. Furthermore, we combine transfer matrices
and boundary condition of the elements upstream of the transition
duct, i.e., duct, flame response, burner, and upstream impedance,
into a scalar admittance for each can, AðnÞðxÞ, with can index n

A nð Þ ¼
�in tan khLð Þ Zpl � fM � ikcLb

� �
þ 1þ Th=Tc � 1ð ÞF n xð Þ

n Zpl � fM � ikcLb

� �
� i tan khLð Þ 1þ Th=Tc � 1ð ÞF n xð Þ

� �

Here, Zpl is the plenum impedance (set to zero), kc and kh are
wavenumber upstream and downstream of the flame, respectively,
n is the ratio of characteristic impedances on the hot and cold
side, M is the burner Mach number, Lb the effective length of the
burner, Th and Tc temperatures on the burned and unburned side,
respectively, and F nðxÞ the flame transfer function in the nth can.
Instead of choosing one of the many flame transfer function mod-
els available in the literature, we choose a form that is most appro-
priate for our purpose

FðnÞ ¼ gðnÞe�ip=2 (12)

where we will assign different values to the gain gn in the follow-
ing. By fixing a constant phase to FðnÞ in Eq. (12), all modes in
one cluster of eigenfrequencies will be very similarly amplified.
This is because when the eigenfrequencies are close, the axial
mode shape is similar, and this leads to similar Rayleigh driving.
Moreover, if we consider the first cluster of eigenfrequencies,
which is associated with an axial quarter-wave mode that has a
node at the upstream end, a phase of �p/2 provides maximum
driving for the purely acoustic modes. (Note that this does not
necessarily hold for the thermoacoustic modes for which the max-
imum driving may be attained for a slightly different phase).

The upstream can admittance can be written as a frequency-
dependent scalar function because the cans are assumed
uncoupled on the upstream side. In order to formulate the disper-
sion relation for the system in a compact fashion, we introduce the
upstream impedance matrix AðxÞ, which is diagonal and has ele-
ments ðAÞðnqÞ ¼ AðnÞdnq. Analogous to the can impedance matrix
ZðxÞ, the element nq of the admittance matrix maps the pressure
in can q to the acoustic velocity in can n, upstream of the transi-
tion duct. If all cans are identical upstream of the transition duct,
the admittance matrix AðxÞ is a multiple of the identity matrix
and then also circulant. However, if we allow for different flame
responses among the cans, A is still diagonal but the diagonal
entries will generally be different so that A is no longer circulant.
Now for the pressure field to be continuous at the upstream end of
the transition duct, we require

ZðxÞAðxÞp ¼ p

which induces the dispersion relation

det½ZðxÞAðxÞ � I� ¼ 0 (13)

where I is the N�N identity matrix. Solutions xk to Eq. (13) are
the system’s eigenvalues, ReðxkÞ and rk � �ImðxkÞ correspond-
ing to angular oscillation frequency and growth rate of the kth
mode, respectively. The associated modal pressure distribution
(the eigenvector pk) is then obtained as the nullspace of the system
matrix evaluated at the eigenfrequency [30]

pk ¼ ker½ZðxkÞAðxkÞ � I�

The dimension of the kernel corresponds to the geometric multi-
plicity and thus indicates whether the eigenvalue is degenerate.

We examine the system eigenvalues for three different cases:
(i) there is a temperature increase across the flame but no flame
response; (ii) the flame response is identical in all cans and set
according to Eq. (12) with a gain gðnÞ ¼ 0:2; and (iii) the flame
response is set as for case (ii), except for the first can, where the
gain is increased to gð1Þ ¼ 0:6. The lowest cluster of eigenvalues,
corresponding to an axial quarter-wave mode in the cans, are dis-
played for the three cases in Fig. 11. The eigenvalues have been
normalized by the angular eigenfrequency of the quarter-wave
mode in an isolated can, x0. We consider the case without flame
response (black circles) first. As there is no damping included in
the model, all eigenvalues are purely real (neither damped nor
amplified). There are seven distinct eigenvalues in one cluster,
two of which are simple; the other five have algebraic multiplicity
two. The two simple eigenvalues correspond to azimuthal mode
orders zero and six and the degenerate ones to azimuthal orders
two to five. This can be predicted entirely based on the system’s
symmetry [30], but we will not repeat these arguments here for
the sake of brevity. The eigenvalues with homogeneously distrib-
uted flame response (blue squares) all have negative imaginary
part (positive growth rate) and are thus unstable. Furthermore, no
splitting of degenerate eigenvalues is observed, as the flame
response preserves the full symmetry.

For case (iii), in which the gain of the flame response in the first
can is increased by a factor of three (red triangles), part of the
eigenvalues exhibit larger growth rates. Furthermore, all initially
degenerate modes are split because the system does not feature
any discrete rotational symmetry anymore. This is consistent with
arguments based on the system’s symmetry group [30] or the so-
called C2n criterion [32]. One of the two split modes associated
with an initially degenerate eigenvalue is seen to remain unaltered
with respect to the symmetric case. This is because the pressure
distributions corresponding to azimuthal orders one to five can be
oriented such that they have a node in the first can so that the
increased flame response gain has no effect. One striking feature
is that the mode with the highest oscillation frequency also exhib-
its a distinctly larger growth rate.

Fig. 11 Complex eigenvalues for the three cases considered.
The eigenvalues have been normalized with the angular eigen-
frequency of the quarter-wave mode of an isolated can. The ver-
tical axis is the normalized growth rate of oscillation of each
mode. The red numbers refer to the asymmetric case and
describe the mth azimuthal order of the respective symmetric
eigenmode. The amplitude and phase of each asymmetric
mode is presented in Fig. 12 in the plot with the same red num-
ber in the top left corner.
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We consider the mode shapes in the form of azimuthal pressure
distribution at the inlet of the transition ducts next (Fig. 12). Only
those corresponding to the asymmetric case are shown. For the
symmetric cases, the system matrix ZA� I is circulant, and all
eigenvectors are discrete Fourier modes, as presented earlier in
this paper and in Ref. [29]. While the modes corresponding to the
lower eigenfrequencies are almost unaffected by the asymmetry,
those with higher azimuthal order are seen to strongly differ from
the symmetric case. The mode with the highest oscillation fre-
quency (bottom right) is affected most; this is also the mode that
gains the biggest increase in growth rate through the asymmetry
(Fig. 11). In fact, this mode shape is quite different from all the
modes corresponding to the symmetric case (the discrete Fourier
modes) and presents an increased amplitude level in a set of
neighboring cans. We discuss next experimental evidence of this
pattern.

Goldmeer et al. [33, Fig. 14] show a pulsation pattern for a GE
gas turbine that strongly resembles the amplitude pattern of
Fig. 12, bottom right frame (m¼ 6). Also, the experimental results
of Fig. 4(b) show a larger amplitude in the subset of cans 8–12
that can be caused by a locally increased flame response due to
loss of perfect symmetry of the system. We observe that this
mode localization can be caused by other local perturbation of the
symmetry, i.e., a change in the geometry in one can can lead to a
similar perturbation of the problem and resulting pulsation pat-
tern. This explains the experience of Calpine on how increased
pulsation levels in certain cans can be related to localized hard-
ware damage. In particular, Sewell and Sobieski [34, Fig. 7.13]
present experimental evidence that a transition piece mechanical
failure is linked to the onset of thermoacoustic oscillations local-
ized in the same can and few neighboring cans.

A relatively small asymmetric perturbation can, thus, have a
drastic impact on the azimuthal pressure distribution in a can-
annular system. This effect is indeed reminiscent of mode local-
ization, a phenomenon that is frequently observed in slightly
asymmetric, weakly coupled systems [35].

Conclusions

In this paper, we introduce a low-order model for the acoustic
communication at the turbine inlet between the transition ducts of
can-annular combustors with N cans. We use the model to discuss
the mode shapes and eigenfrequencies of can-annular combustors.
We predict how azimuthal modes correspond to certain synchroni-
zation patterns of the phases between the axial acoustic pressure
in the cans. We validate these patterns with engine data of a 14-
can combustor.

We discuss the equivalent reflection coefficient of the set of N
transition ducts for a thermoacoustic mode of a certain azimuthal
order m. We present the asymptotic behavior in the zero Hz limit
and its physical interpretation. We study the eigenfrequencies of
can-annular systems as a function of the overall axial length of the
cans and predict the occurrence of clusters of eigenmodes with very
close frequencies. Within a cluster, the frequencies of the modes
are increasing as a function of the azimuthal order m of the modes.
These clusters are a peculiar feature of can-annular combustors as
opposed to annular combustors. We present experimental evidence
of these clusters with engine data of a 12-can combustor.

After analyzing the problem from a system perspective in the
space of the azimuthal modes, we change perspective and discuss
the direct interaction between each pair of the N cans. We show
how the two perspectives are linked by the discrete Fourier trans-
form in the spatial azimuthal direction. We discuss how at low
frequencies the coupling strength between two cans depends on
their distance. As a result, in this low frequency regime, an axial
acoustic wave traveling downstream a fixed transition duct is pri-
marily reflected back, and only partially transmitted to the other
cans. Of the transmitted part, the strongest transmission occurs
toward the two closest neighboring cans. This suggests that the
coupling between cans is low, as compared to the feedback loop
of each can with itself due to the reflection, and that we can look
at the set of N cans as a set of weakly coupled oscillators. Because
the strength of the coupling is stronger between cans that are

Fig. 12 Visualization of the azimuthal mode shapes associated with the eigenvalues of the asymmetric case (Fig. 11).
Ordered from left to right and top to bottom with increasing oscillation frequency. The bar height indicates the pressure
amplitude and the bar color the phase (same color legend as in Fig. 3), at the interface between each can and each transition
duct. The number in the top left corner is the azimuthal order m of the corresponding mode in the symmetric case. Couple of
modes with the same m differ very little in frequency and can result in a slowly modulated linear combination with approxi-
mately constant amplitude along the annulus. This is not the case for the perturbed push–pull mode in the bottom right cor-
ner, where cans 1, 2, 3, 10, 11, and 12 present much larger amplitude than the others.
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close, synchronization between neighboring cans is stronger when
a whole cluster of modes is excited in the system.

We finally discuss the effect of a loss of rotational symmetry in
the system and show that it is responsible of mode localization.
We start with a model of a symmetric can-annular combustor with
N¼ 12 cans and artificially increase the response of the flame in
can number 1, to mimic a generic local change of the system. We
find that the shapes of the eigenmodes forming the cluster present a
strong sensitivity against this perturbation. This strong sensitivity is
typical of systems that show clusters of eigenmodes and is then a
peculiar feature of can-annular combustors, as opposed to annular
combustors, which do not exhibit clusters nor a strong sensitivity of
the mode shapes on the loss of rotational symmetry. We observe
that in the can with a stronger flame response, the push–pull mode
shows the strongest change both (1) in the amplitude pattern, with a
strong increase of amplitude in the same can, and to a smaller
extent to its neighbors; (2) in the growth rate, in particular in a lin-
ear framework it is the mode by far excited the most. We then
review how the pulsation amplitude pattern of this mode has been
experimentally observed in three different engines. In one case, this
was found to be caused by a localized structural damage in one can.
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