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Amplitude statistics prediction in
thermoacoustics
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We discuss the statistics of acoustic pressure of thermoacoustic oscillations, either
axial or azimuthal in nature. We derive a model where the describing functions of
the fluctuating heat release rate of the flame and of the acoustic losses appear directly
in the equations. The background combustion noise is assumed to be additive, and
we show how one can recover, from the measurement of the acoustic pressure at
the flame location, the projected describing function of the flame minus the acoustic
losses. Using the same equations, one can predict the statistics of the amplitude of
acoustic pressure for a certain system. The theory is then tested on an azimuthal
thermoacoustic instability in an industrial annular combustor by measuring the state of
the system, predicting the acoustic pressure amplitude statistics after a design change
and comparing the prediction with the measured statistics after the design change has
been implemented.

Key words: low-dimensional models, noise control, nonlinear dynamical systems

1. Introduction

A thermoacoustic instability can occur because of the feedback loop between an
acoustic field and a fluctuating heat release rate response to it. It often converges to
an attractor solution that exhibits a narrowband spectrum centred around a frequency
ω plus its harmonics, as a result of the dynamic balance of acoustic energy between
the flame response and the acoustic losses of the system.

One can model the flame response and the acoustic losses with linear transfer
functions and predict the stability boundary of the linearized system with a stability
analysis. This analysis can be extended to the nonlinear regime by making use
of describing functions (Gelb & Vander Velde 1968), which allow one to predict
the amplitude and frequency of oscillations in the unstable regions (Dowling 1999;
Noiray et al. 2008; Boudy et al. 2011b). With this approach, the coherent response
of the flame to a sinusoidal acoustic field is modelled as a function of the amplitude
of pulsation, while the incoherent background combustion noise is discarded. A
whole body of work (Culick et al. 1992, Lieuwen 2003b, and references therein) has
investigated how this background noise has an important role both in affecting the
temporal dynamics of the system and in determining the amplitude of oscillation.

† Email address for correspondence: giulio.ghirardo@ansaldoenergia.com
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Wagner, Christoph & Sattelmayer (2013), Mejia, Miguel-Brebion & Selle (2016)
and Noiray (2016) analysed the measured time series of a thermoacoustic system
exhibiting a noisy attractor solution with a dominant frequency peak. They reviewed
different techniques to estimate the linear growth rate that the system would manifest
if the noisy term was artificially shut off from the equations. Other recent studies have
compared the linear growth rates estimated from time series of an experiment with
the numerical linear growth rate predictions of a low-order model; see, e.g., Bothien,
Noiray & Schuermans (2015), Stadlmair et al. (2015), Hummel et al. (2016). We
show in this paper that it is possible and easier to predict the full nonlinear behaviour
of the system instead of focusing on the linear behaviour that the system would
manifest in the non-physical scenario of setting the background noise to zero. In
particular, one can predict the probability density functions (PDFs) of the amplitudes
of oscillation instead of characterizing linear growth rates. The predicted PDFs of
the amplitude of acoustic pressure can be directly compared with the experimental
PDFs. This new perspective shifts the focus from eigenvalue problems and respective
growth rates in the linear and nonlinear regimes to stochastic differential equations
and PDFs.

The theory is presented in § 2, the experimental validation in § 3 and the conclusions
in § 4.

2. Theory
We introduce the governing equations and key assumptions on the problem in § 2.1

and the heat release rate model in § 2.2. In §§ 2.3 and 2.4, we briefly apply a well-
known perturbation technique to the problem, to obtain in § 2.5 a single oscillator
model, which is further simplified in § 2.6. In § 2.7, we apply stochastic averaging and
obtain the expression for the PDF of the acoustic pressure amplitude in the combustor.
In § 2.8, we discuss how one can use these results to identify the flame response from
time series data, and in § 2.9, how to predict the new state of a thermoacoustic system
when a change is applied to it, e.g. the installation of Helmholtz dampers.

2.1. Governing equations
We study the problem in terms of the pressure p, the density ρ, the entropy s and the
three-dimensional velocity field u. We express each variable f as the sum of a steady
component f0 and a fluctuating time-dependent acoustic component f1,

p(x, t) = p0 + p1(x, t),
ρ(x, t) = ρ0(x)+ ρ1(x, t),
s(x, t) = s0(x)+ s1(x, t),
u(x, t) = u1(x, t),

 (2.1)

where x and t are respectively a three-dimensional coordinate and the time variable.
In (2.1), we assume that the steady velocity field u0 is zero, i.e. make a zero-

Mach-number M assumption, which we discuss next. The Mach number affects the
frequencies and mode shapes of the thermoacoustic modes and causes jumps in the
acoustic pressure mode shapes at sudden changes of cross section area and across
the flame. In particular, (1) the effect on the frequencies scales like O(M2) (Dowling
& Stow 2003), (2) the jump of the acoustic pressure at area changes is related to
the steady pressure loss/recovery due to the change of cross section area and scales
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218 G. Ghirardo, F. Boudy and M. R. Bothien

like O(M) (Paschereit & Polifke 1998), (3) the jump of the acoustic pressure across
the flame scales like O(M) (Lieuwen 2001c, equation (8)). In land-based gas turbine
combustors, the Mach number is low and these effects are negligible. In particular, the
jumps on the acoustic pressure mentioned earlier cannot be observed in the measured
burner transfer matrices of industrial burners (Paschereit & Polifke 1998; Bellucci
et al. 2005), validating the hypothesis of a zero-Mach-number assumption in (2.1).

Under the zero-Mach-number assumption, one can prove from the momentum
equation that the steady acoustic pressure p0 does not depend on space. We also
assume that the unburnt and burnt gas mixtures are perfect gases, i.e. the equation of
state p= ρRT applies, where the specific gas constant R of the gas mixture and the
adiabatic ratio γ =Cp/Cv are independent of the temperature T .

We linearize the equations of conservation of mass, momentum, energy, the
transport equation of entropy and the gas state equation around the steady fields
{p0, ρ0, s0}, assuming that the fluctuations {p1, ρ1, s1, u1} are small. For example,
the fluctuations of the pressure p1 are of the order of 1 %–2 % of p0, as found by
Scarinci (2005, § II) in a land-based aeroderivative gas turbine. Neglecting viscous
losses and heat diffusion, one obtains the equations governing the evolution of the
acoustic pressure p1 and the acoustic velocity u1, as reviewed, e.g., by Clavin, Kim
& Williams (1994, § A),

1
c2

∂p1

∂t
= −ρ0∇ · u1 +

γ − 1
c2

q1, (2.2a)

ρ0
∂u1

∂t
= −∇p1. (2.2b)

On the right-hand side of (2.2a), the term q1 is the fluctuating heat release rate of the
combustion process which is discussed in the next subsection. The fields ρ0= p0/RT0
and c = γRT0 are functions of the temperature field T0(x) and depend on space. In
particular, they vary considerably between the two regions of unburnt and burnt gases,
upstream and downstream of the flame. However, the product ρ0c2

= γ p0 is constant,
so we decide to multiply (2.2a) by c2 and obtain

∂p1

∂t
= −γ p0∇ · u1 + (γ − 1)q1, (2.3a)

ρ0
∂u1

∂t
= −∇p1, (2.3b)

so that all multiplying factors in (2.3a) are constant. Equations (2.3) apply to the
volume Ω of the combustor, with boundary ∂Ω .

We now discuss the boundary conditions. On all walls of the combustor, we have
that u1 · n = 0, where n is the unit vector orthogonal to the boundary ∂Ω , pointing
outwards. At the compressor outlet and the turbine inlet, we impose an incoming
acoustic velocity u⊥,

u1 · n=−u⊥ at inlet and outlet, (2.4)

where the sign convention on u⊥ is such that u⊥(x, t) is positive when mass is added
to the domain Ω . We then relate the incoming velocity u⊥ to the local value of the
pressure through the reduced admittance Y ,

Y ≡
u⊥

p/(ρ0c)
=

R− 1
R+ 1

, (2.5)
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Amplitude statistics prediction in thermoacoustics 219

where R is the reflection coefficient of an acoustic wave travelling in the outer
direction being reflected inside the domain on the boundary ∂Ω . Because the flow is
nearly choked at inlet and outlet (Lieuwen & Yang 2005), the boundary condition is
largely reflective (Marble & Candel 1977), i.e. the gain of the reflection coefficient R
on the boundary is close to unity at the low frequencies of interest, as discussed for
a realistic configuration by Bauerheim et al. (2016). Under these conditions of strong
reflection on the upstream and downstream boundaries, Hoeijmakers et al. (2014),
Emmert, Bomberg & Polifke (2015), Silva et al. (2015) and Poinsot (2016) find that
the thermoacoustic modes are manifested as a perturbation of acoustic modes. We
assume that the thermoacoustic modes are manifested as a perturbation of acoustic
modes, rather being the recently identified intrinsic modes associated only with the
flame response.

Combining (2.3), we obtain the inhomogeneous wave equation

∂2p1

∂t2
− γ p0∇ ·

(
∇p1

ρ0

)
= (γ − 1)

∂q1

∂t
. (2.6)

2.2. Heat release rate model
We model the heat release rate q1 coming from the flame as the sum of two
contributions (Chiu & Summerfield 1974; Rajaram & Lieuwen 2009),

q1 = qd + qs, (2.7)

where the subscripts d and s stand for deterministic and stochastic respectively. In
(2.7), we distinguish between qd, which will be modelled as a function of the acoustic
field at the excited thermoacoustic frequency, and qs, which represents the fluctuations
of the heat release which are caused by physics that we neglect in the model. We
discuss the two contributions in the following two subsections.

2.2.1. Deterministic part
The model for the deterministic heat release rate qd is the same as that presented

in greater detail in Ghirardo, Juniper & Moeck (2016), and is summarized here.
The source term qd appearing on the right-hand side of (2.3a) depends on the
axial acoustic velocity at the burner (Fleifil et al. 1996; Ducruix, Durox & Candel
2000; Preetham & Lieuwen 2008; Palies et al. 2010) and/or at the fuel injection
location (Lieuwen & Zinn 1998; Bellucci et al. 2001; Polifke, Kopitz & Serbanoviv
2001; Krebs et al. 2002). For a review of both mechanisms, see Lieuwen (2003a),
Schuermans et al. (2004) and Candel et al. (2014).

One can express these acoustic velocities as the admittances of the whole part of
the combustor upstream of their location multiplied by the local acoustic pressure, as
long as only one axial mode or only a couple of azimuthal modes are excited. This is
carried out in the modelling of one annular experimental rig by Ghirardo et al. (2016,
§ 5.1), where the admittance of the whole part of the system upstream of the burner
is modelled. We decide to lump the flame response q1 as a nonlinear time-invariant
operator Q of the acoustic pressure pf (t) at the flame location, noting that the acoustic
pressure is the same both upstream and downstream of the flame,

qd(t)=Q[pf (t)]. (2.8)

The operator Q is a nonlinear time-invariant operator and has memory of the past
history of pf (t). For example, Ghirardo et al. (2015) choose a Hammerstein model for
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220 G. Ghirardo, F. Boudy and M. R. Bothien

the operator Q. Equation (2.8) allows us later to consider a set of equations where
everything depends on the pressure. The describing function Q(A, ω) of the operator
Q is defined as

Q(A, ω)≡
1
A

1
π/ω

∫ 2π/ω

0
Q[A cos(ωt)]e−iωt dt. (2.9)

The describing function Q(A, ω) calculates the transfer function between one
sinusoidal input p(t) = A cos(ωt) and the respective output Q[p(t)] at a fixed level
of the acoustic pressure amplitude A. The dependence of Q on the frequency ω is
typical of transfer functions, while the dependence on the amplitude A of acoustic
pressure accounts for flames whose response depends nonlinearly on A. This sets a
describing function apart from a simpler transfer function, which can be used only
for linear operators. In fact, if Q is linear, one can take A out of the square brackets
in (2.9) and simplify it, so that Q would not depend on A in the linear case. The
real part of Q describes the part of the heat release that is in phase with the input
pressure, and in a combustor leads to a positive Rayleigh contribution if it is positive.
Instead, the imaginary part of Q is in quadrature with the input and is responsible
for a shift of the thermoacoustic frequency. Both aspects will be covered in § 2.7.

We observe that the describing function Q(A, ω) defined as in (2.9) does not
fully describe the original operator Q[p] in two ways. First, it does not capture the
additional response of Q at frequencies that are multiples of ω. Under the assumption
that no system resonance is found at these frequencies, this additional response can
be typically neglected in a broad class of systems exhibiting low-pass filter behaviour
above ω (Gelb & Vander Velde 1968), as often assumed in thermoacoustics. Second,
the definition (2.9) describes the response to steady sinusoidal input with real valued
ω, without capturing transients. For example, when the input amplitude A grows from
one value A1 to a second value A2, the operator Q[p(t)] will show correctly a delayed
response, where the internal state of Q keeps memory of A1 for some time. However,
the describing function Q(A(t), ω) will show a sudden change as soon as A changes
from A1. This deficiency of the describing function is not noticeable when the system
is at a steady amplitude, typical of stable limit cycles in deterministic systems. It
has, however, an effect on the dynamics when stochastic noise is considered, because
physically noise pushes the system away from the limit cycle and leads to transient
system response. We will reconsider this assumption in the conclusions.

2.2.2. Stochastic part
In this subsection, we discuss the heat release rate fluctuations qs that occur

regardless of the coherent acoustic field. These are sometimes referred to as
background noise of the flame, are always present in turbulent flames and are
the only observed fluctuations of flames studied in open flame configurations (Chiu
& Summerfield 1974), where the classical acoustic feedback loop is not present (and
we assume that no intrinsic instabilities occur, for simplicity). Strahle (1971, 1972)
discusses how this component typically has a spectrum with most of the energy in
the low frequencies. Hedge, Reuter & Zinn (1987) are probably the first to make
use of the measured spectrum qs of the heat release rate of a stable flame to make
predictions of the same flame in an unstable configuration. Rajaram & Lieuwen
(2009) review and discuss the spectra of open premixed flames, which emit only
the component qs. They show that the non-dimensional spectra of qs collapse well
for various cases and conditions. One then considers modelling of qs as a stochastic
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Amplitude statistics prediction in thermoacoustics 221

process that has no dependence on the state of the system. Culick et al. (1992)
propose to model a generic additional stochastic source term as a white Gaussian
noise σ̃ ξ (t) with autocovariance function Cξξ (τ ) = σ̃

2δ(τ ). This assumption is very
convenient because of the analytical properties that white Gaussian noise has in
the context of stochastic differential equations. It is also effective. In fact, recently,
Bonciolini, Boujo & Noiray (2017) studied the effect on a thermoacoustic problem
of choosing two different additive sources of coloured noise, which in principle can
mimic the same spectra of qs. They showed that these coloured noises lead to the
same results of an equivalent additive white noise source. We then assume in the
following that the noise is white, Gaussian and with unit variance, and will denote
it with the symbol ξ . Later in the paper, qs will appear in a spatial integral together
with the eigenmode ψ of interest,

qs,pr(t)≡
γ − 1
Λ

∫
Ω

qs(x, t)ψ(x) dV = σξ(t), (2.10)

where ψ is a function of space and Λ is a constant. We assume that the source term
on the right-hand side of (2.10) is white Gaussian noise, with standard deviation σ .
We will discuss the effect of the stochastic part of the fluctuating heat release rate in
§ 2.7.

2.3. The conservative equations
In this section, we discuss the homogeneous problem, obtained by setting source
terms to zero in the governing equations. By doing this, we recover a self-adjoint
problem, for which a set of orthogonal eigenmodes exist. These modes, so-called
Galerkin modes, allow a series expansion of the solution, which is employed later in
§ 2.4.

By setting q1 = 0 in (2.6), we obtain the homogeneous wave equation

L[p] ≡
∂2p
∂t2
− γ p0∇ ·

(
∇p
ρ0

)
= 0. (2.11)

Despite having a first-order spatial derivative, the operator L is self-adjoint, as
discussed by Morse & Feshback (1953a, chap. 8, p. 874). The problem is separable
in the space and time coordinates, and one can look for a solution with structure
p(x, t)= η(t)ψ(x),

η̈(t)+ω2η(t) = 0, (2.12a)

γ p0∇ ·

(
∇ψ(x)
ρ0

)
+ω2ψ(x) = 0, (2.12b)

where we denote the time derivative with a dot for brevity, and we look for the
constant ω such that (2.12b) admits a solution. We choose the boundary condition
∇ψ · n= 0 on the boundary ∂Ω for the Helmholtz equation (2.12b) because the flow
is nearly choked at the inlet and outlet. We detail why this choice is appropriate in
appendix A. Equation (2.12b) is the eigenproblem

H[ψ] = λψ, (2.13a)
H[ψ] ≡ γ p0∇ · (∇ψ/ρ0),

λ ≡ −ω2,

}
(2.13b)
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222 G. Ghirardo, F. Boudy and M. R. Bothien

where the eigenvalue is λ. Because the domain is finite and boundary conditions are
reflective, there is a countable set {(ωn, ψn), n= 1, 2, . . .} of solutions of (2.13).

Since the problem is self-adjoint, the spectral theorem guarantees that the
eigenfrequencies ωn are real valued, that we can choose the eigenmodes ψn to
be real valued and that the set of eigenmodes are orthogonal,

ψm =ψ
∗

m,

ωm =ω
∗

m,

}
m= 1, 2, . . . , (2.14a)∫

Ω

ψm(x)ψ∗n (x) dV =Λmδmn, m, n= 1, 2, . . . , (2.14b)

where the asterisk denotes complex conjugation. The spectral theorem also guarantees
that the set of eigenmodes are a complete basis for the space of functions of the
homogeneous problem. We choose to express the following integral as a linear
combination of the Galerkin modes:∫ t

0
p1(x, t′) dt′ =

∞∑
m=1

ηm(t)ψm(x), (2.15a)

where ηm(t) are the time-dependent coefficients, and we express with t′ the time
variable inside the integral. We then obtain the series expansions for the acoustic
pressure and acoustic velocity fields,

p1(x, t) =
∞∑

m=0

η̇n(t)ψm(x), (2.15b)

u1(x, t) = −
∞∑

m=0

ηm(t)
∇ψm(x)
ρ0

, (2.15c)

where (2.15b) is obtained by deriving (2.15a) with respect to the time t and (2.15c)
is obtained by substituting (2.15b) in (2.3b) and integrating by t.

In this subsection, we have obtained a series expansion of the acoustic pressure p1
and acoustic velocity u1 in (2.15) which is used in the following as ansatz for the
original equation (2.6). The mode ψm(x) is the mth Galerkin mode, and ηm(t) is the
corresponding time-dependent amplitude.

2.4. Galerkin projection
In this subsection, we project the governing equations (2.6) on the Galerkin modes
introduced in the previous subsection. This allows us to map the dynamics from a
partial differential equation to a set of ordinary differential equations.

We multiply (2.12b) calculated for the nth eigenmode by
∫ t

0 p1(x, t′) dt′, and sum it
to (2.3a) multiplied by ψn,

γ p0∇ ·

(
∇ψn

ρ0

) ∫ t

0
p1 dt′ +ω2ψn

∫ t

0
p1 dt′ +

∂p1

∂t
ψn

+ γ p0∇ · u1ψn = (γ − 1)q1ψn. (2.16)
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We reorder the terms in the equation,

∂p1

∂t
ψn +ω

2ψn

∫ t

0
p1 dt′ = (γ − 1)q1ψn − γ p0

×

[
∇ ·

(
∇ψn

ρ0

) ∫ t

0
p1 dt′ +∇ · u1ψn

]
︸ ︷︷ ︸

T

. (2.17)

We integrate (2.17) over the whole domain Ω ,∫
Ω

∂p1

∂t
ψn dV +

∫
Ω

ω2ψn

∫ t

0
p1 dt′ dV =

∫
Ω

(γ − 1)q1ψn dV − γ p0

∫
Ω

T dV. (2.18)

We rewrite the last integral on the right-hand side of (2.18) as∫
Ω

T dV =
∫
Ω

∇ ·

(
∇ψn

ρ0

) ∫ t

0
p1 dt′ +∇ · u1ψn dV

=

∫
Ω

∇ ·

(
∇ψn

ρ0

∫ t

0
p1 dt′ + u1ψn

)
dV

−

∫
Ω

∇ψn

ρ0
· ∇

(∫ t

0
p1 dt′

)
+ u1 · ∇ψn dV. (2.19)

The second volume integral in (2.19) is zero because we substitute ∇(
∫ t

0 p1 dt′) =
−ρ0u1 from (2.3b) and the two terms in the argument of the integral cancel out. We
apply the Green theorem to the first integral of (2.19),∫

Ω

T dV =
∫
∂Ω

[
1
ρ0
∇ψn · n

∫ t

0
p1 dt′ + u1 · nψn

]
dS. (2.20)

The integral of the first term in (2.20) is zero because we impose by construction
∇ψn · n= 0 on the boundary ∂Ω just before (2.12). We are left with∫

Ω

T dV =
∫
∂Ω

u1 · nψn dS=−
∫

inlet
outlet

u⊥ψn dS. (2.21)

We substitute (2.15) and (2.21) in (2.18), exploit (2.14) and divide by Λn,

η̈n +ω
2
nηn =

γ − 1
Λn

∫
Ω

q1ψn dV +
γ p0

Λn

∫
inlet

outlet

u⊥ψn dS n= 0, 1, . . . . (2.22)

We find in (2.22) that the amplitudes ηn(t) of the eigenmodes ψn(x) of the solution
(2.15) are a set of oscillators. Each nth oscillator is forced by two source terms,
projected on the mode ψn. The problem (2.22) is nonlinear because the operator Q
appearing in the expressions (2.7) and (2.8) for the heat release rate response q1 is
nonlinear, and the oscillators ηn interact with each other only via q1 and the boundary
conditions.

Similar equations are obtained by Morse & Feshback (1953a, p. 849) in terms
of the Green function, and similarly reviewed by Culick (2006, chap. 4.3). There
are, however, two differences from these references. First, we account for a spatial
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dependence of c, ρ0 and T0, which makes the set of eigenmodes {ψm, ωm} very
close to the thermoacoustic modes, except for the volume source q1 6= 0 in (2.3)
and the boundary source u⊥, which will be treated as a perturbation in the next
subsection. In particular, the Galerkin modes account for the sudden jump in the
acoustic velocity at the flame interface due to the temperature jump. Second, we
choose in (2.15b) the structure of the pressure as

∑
(∂ηm(t)/∂t)ψm instead of a

structure like
∑
χm(t)ψm, where χm is without time derivative. We then carry out

the projection on the fluctuating pressure equation (2.3a) instead of the usual wave
equation. This leads to the set of dynamic equations (2.22), where the source term
q1 is present, instead of its time derivative ∂q1/∂t, as presented, e.g., in Dowling
& Stow (2003, equation (36)) or in Schuermans, Paschereit & Monkewitz (2006,
equation (16)). This simplifies the physical interpretation of the equations later in
§ 2.7.

To achieve convergence of the series expansion (2.15b) to the solution, one must
formally consider all of the infinite modes ηn(t), n= 1, 2, . . . ,∞ in (2.22). However,
each nth oscillator responds little at frequencies far from its natural frequency ωn,
and self-excited thermoacoustic oscillations often have a very narrowband spectrum.
Then, in certain applications, when the behaviour of a system is predicted over a
certain frequency range, one truncates the set of equations to all of the modes with
frequencies ωn within that range. For example, Zinn & Lores (1971) found that 10
eigenmodes were sufficient for time domain accuracy of a nonlinear simulation of an
axial combustion instability in a rocket. The next section focuses instead on another
application, when a self-excited thermoacoustic response is identified (as opposed to
predicted), where a single mode is often sufficient.

2.5. The single oscillator model
In this subsection, we reduce the set of ordinary differential equations (2.22) obtained
in the previous section to a single oscillator model because it is easier to manipulate
analytically for the thermoacoustic system. This will be analysed later in § 2.7.

We substitute in (2.22) the heat release rate model from (2.7) and (2.8) and the
boundary admittance A introduced in (2.5),

η̈n +ω
2
nηn =

γ − 1
Λn

∫
Ω

Q
[
∞∑

m=0

η̇mψm(xf )

]
ψn dV +

γ − 1
Λn

∫
Ω

qsψn dV

+
c
Λn

∫
inlet
outlet

Y
[
∞∑

m=0

η̇mψm

]
ψn dS n= 0, 1, . . . . (2.23)

The right-hand side of (2.23) is a regular perturbation of the homogeneous problem
discussed in § 2.3, which modulates the amplitude of each oscillator. Morse &
Feshback (1953b, chap. 9.1) present three iterative algorithms in the frequency
domain that allow one to track how each eigenmode ψn is perturbed, by fixing at the
first iteration p̂(0)(x, ω) = ψn(x) in the perturbation term, and calculate the resulting
p̂(1) iteratively from an integral formulation of the problem. In the frequency domain,
each Galerkin mode is perturbed to a non-zero growth rate σ and to a new frequency
ωn shifted from the ωn. The smallness of the perturbation term, which is the whole
right-hand side of (2.23), can be discussed indirectly in terms of the non-dimensional
growth rate σ/ω and the frequency shift |ωn − ωn|. A literature review of typical
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growth rates and frequency shifts caused by the flame is discussed in Ghirardo,
Juniper & Bothien (2017).

Culick (1988, § 4.3, and citations therein) reviews this method in detail for
thermoacoustic applications. In particular, after his equation (4.10), he discusses
how one can truncate the iterative procedure at the first step, i.e. approximate p with
just one Galerkin mode, and carry out only the first step of the derivation. In the time
domain equation (2.23), this corresponds to ignoring all Galerkin modes except the
one we want to identify. This approximation is often reasonable in thermoacoustic
applications at low Mach numbers because the perturbation term is usually small.
However, the shape of the Galerkin mode does not capture the sudden physical jump
in acoustic velocity across the flame interface due to the flame response that is instead
present in the exact thermoacoustic mode. Since in the following we will consider
only this one mode, for convenience, we denote its eigenvector and amplitude as ψ
and η respectively, so that p(x, t)≈ η̇(t)ψ(x), and its eigenfrequency as ω0. We also
scale the mode ψ so that ψ(xf ) = 1, and η̇(t) is then the acoustic pressure at the
flame location xf . By keeping only this mode in (2.23), and after substituting (2.10),
we obtain

η̈+ω2
0η=

γ − 1
Λ

∫
Ω

Q[η̇ψ(xf )]ψ dV +
γ − 1
Λn

∫
Ω

qsψn dV

+
c
Λn

∫
inlet
outlet

Y[η̇ψ]ψ dS. (2.24)

Equation (2.24) is the fundamental equation that is discussed in § 2.7 and used in the
experimental validation in § 3. The next subsection opens a parenthesis where (2.24)
is simplified for some common applications.

2.6. Additional simplifications
In this subsection, we further simplify the source terms in (2.24), exploiting some
features of the specific validation case discussed later in § 3. It should be noticed that
these features add insight to the specific case at hand, but are not necessary for the
following to hold. We assume a single acoustically compact flame, so that the first
integral in (2.24) simplifies to

γ − 1
Λ

∫
Ω

Q[η̇ψ]ψ dV =
γ − 1
Λ

Q[η̇ψ(xf )]ψ(xf ), (2.25)

where xf is the flame position. We observe that the hypothesis of acoustic compactness
regards only the direction of the acoustic pressure gradient. For example, for a purely
azimuthal mode ψ , which is constant in the axial direction, the acoustic compactness
is required only in the direction where the mode varies, i.e. the azimuthal direction.
Since we fixed ψ(xf )= 1, (2.25) simplifies to

γ − 1
Λ

∫
Ω

Q[η̇ψ]ψ dV =
γ − 1
Λ

Q[η̇] =Qpr[η̇], (2.26)

where we have introduced Qpr for brevity. Of the second integral in (2.24), we
consider only the outlet boundary, with the inlet boundary following similarly.
Assuming that the admittance Y does not depend on the amplitude, the operator is
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linear and we can take the argument out of the square brackets. By also substituting
(2.5) for Y , we obtain

c
Λn

∫
outlet

Y[η̇ψ]ψ dS=−
[

c
Λn

1− R
1+ R

∫
outlet

ψ2 dS
]
η̇. (2.27)

Because the flow is nearly choked at both compressor outlet and turbine inlet, the
value of the gain of R is close to unity (Marble & Candel 1977). We also assume that
R is real valued by making a zero-Helmholtz-number approximation, since the first
vane at the turbine inlet is axially acoustically compact compared with the acoustic
wavelength of interest. It follows that the term between square brackets in (2.27) does
not depend on frequency and is an equivalent damping coefficient α > 0,

c
Λn

∫
inlet
outlet

Y[η̇ψ]ψ dS=−αη̇. (2.28)

By substituting (2.26), (2.28) and (2.10) in (2.24), we obtain

η̈+ω2
0η=Qpr[η̇] − αη̇+ σξ(t). (2.29)

One can account for a finite Helmholtz number at the turbine inlet by artificially
extending the domain in the axial direction to account for a first-order Helmholtz
number correction, as proposed by Stow, Dowling & Hynes (2002), or apply more
accurate reflection models (Duran & Moreau 2013; Duran & Morgans 2015). The
reflection of entropy waves can be included too. One would add a boundary term
depending on the convected entropy fluctuations generated by the flame (Duran &
Moreau 2013; Duran & Morgans 2015). The convection and diffusion of entropy
waves can be modelled separately, since entropy and acoustic fluctuations are
independent (Dowling & Stow 2003, p. 752). The acoustic waves at the flame
position would act as a source in the entropy equations, and the entropy waves at
the turbine inlet would act as a source in the acoustic equations, as presented, e.g.,
by Motheau, Nicoud & Poinsot (2014).

In the more general case, the boundary term would appear in (2.29) as an operator
α[η̇] instead of the linear term −αη̇. This operator would not necessarily be linear
or in phase with η̇. We also notice that other sources of acoustic damping are not
modelled in the governing equations in § 2.1 but have a global damping effect on the
acoustic mode. These are manifested as an additional damping term on the right-hand
side of (2.29), and include effects that are linear in the Mach number M, like the
acoustic losses at abrupt area changes that occur due to the loss of total mean pressure
(Paschereit & Polifke 1998).

In this subsection, we have obtained the oscillator model (2.29) that describes the
temporal evolution of the acoustic pressure η̇ at the burner position as a function
of the acoustic losses and the flame response, both projected on the shape of the
dominant acoustic mode. This is tackled analytically next.

2.7. Stochastic averaging
In this subsection, we apply time averaging to the single oscillator model (2.29),
and obtain a new set of equations describing the dynamics of the slowly varying
amplitude A and phase ϕ of the acoustic pressure. In these equations, we highlight
in particular the effect of the background noise and its role with respect to the
deterministic linear growth rate. We then discuss how to predict the PDF of the
acoustic pressure amplitude of the single oscillator model.
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We rewrite (2.29) for brevity as

η̈(t)+ω2
0η(t) = S[η̇(t)] + σξ(t), (2.30a)
S[p] ≡ Qpr[p] − αp, (2.30b)

where S describes the balance between energy gains from the flame response and
acoustic losses. We choose this ansatz for the pressure at the burner location,

p(t)= η̇(t)= A(t) cos(ωt+ ϕ(t)), (2.31)

and substitute it in (2.30). Here, A and ϕ are the slowly varying amplitude and phase
of the oscillation, and ω is the frequency of the nonlinear eigenmode. Time averaging
is then applied to the system (2.29), as discussed by Ghirardo et al. (2017), for all
terms except ξ(t), obtaining a new stochastic system in terms of (A, ϕ),

ϕ̇ +
ω

2
−
ω2

0

2ω
= −

1
2

Im[S(A)] +
σ

A
√

2
ξ1(t), (2.32a)

Ȧ = +
1
2

Re[S(A)]A+
σ 2

4A
+

σ
√

2
ξ2(t). (2.32b)

The method of averaging maps the nonlinear time domain operator S appearing in
(2.30a) to the respective describing function

S(A)=Qpr(A)− α (2.33)

in (2.32). The last term of (2.32a) and the last two terms of (2.32b) have been
obtained by applying stochastic averaging to the noise term ξ(t), as discussed by
Lieuwen (2003b), and ξ1,2 are two stochastic processes as ξ(t). One can refer to the
appendix of Noiray (2016) for an intuitive derivation and to Roberts & Spanos (1986)
for a more formal one.

Under the assumption that the frequency of oscillation ω varies with time
sufficiently slowly compared with ϕ̇, we find from (2.32a) that ω is solution of

ω

2
−
ω2

0

2ω
=−

1
2

Im[S(A)]. (2.34)

Equation (2.34) governs how the flame response and the acoustic losses affect the
frequency of oscillation ω. We refer to Ghirardo et al. (2017) for a more detailed
analysis of this effect. When analysing experimental data, one does not have access
to ω0 and can calculate ω as the mean frequency of oscillation in the observation
period, because of the weak dependence on the amplitude in (2.34). When making a
prediction, one can calculate ω as the frequency at the limit cycle with zero growth
rate (Dowling 1997). This can be done, for example, with a three-dimensional wave
equation solver (Walz et al. 2002; Laera, Campa & Camporeale 2017), neglecting the
stochastic terms appearing last on the right-hand sides of (2.32). We substitute (2.34)
into (2.32) and obtain

Aϕ̇ =
σ
√

2
ξ1, (2.35a)

Ȧ = F(A)+
σ
√

2
ξ2, (2.35b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

17
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
95

.2
42

.2
13

.1
16

, o
n 

09
 Ju

n 
20

18
 a

t 0
0:

54
:2

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.173
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


228 G. Ghirardo, F. Boudy and M. R. Bothien

where

F(A)=
1
2

Re[S(A)]A+
σ 2

4A
. (2.35c)

Equations (2.35) describe the evolution of slowly varying variables exposed to
Gaussian noise, the so-called Langevin equations. Equation (2.35a) shows that Aϕ̇ is
a white Gaussian process with standard deviation σ/

√
2. The fact that Aϕ̇ and not ϕ̇

is a Gaussian white process explains the small discrepancies between ϕ and a sum of
a Wiener and white Gaussian process in the pioneering studies of Lieuwen & Zinn
(2000) and Lieuwen (2001b).

Equation (2.35b) describes the dynamics of the amplitude A, which is decoupled
from (2.35a) and independent of ϕ. In the deterministic case, σ = 0, and we have
limit-cycle solutions at the amplitudes Alc such that F(Alc)=0, i.e. such that S(Alc)=0.
Deterministic limit-cycle amplitudes are determined by a balance between the energy
gains coming from the flame and the acoustic losses coming from the acoustic
damping, as observed in (2.33). In the stochastic case, σ 6= 0, and stable limit-cycle
solutions Alc such that F(Alc)= 0 are pushed to larger amplitudes by the term σ 2/4A
in (2.35c). Moreover, since this additional term goes to infinity at the origin, the
system will always present a certain level of pulsation due to background noise.
This effect is somewhat expected, but has non-trivial consequences. For example,
systems that are globally stable in the absence of noise, with deterministic negative
linear growth rates, can exhibit large pulsation amplitudes. Conversely, thermoacoustic
systems with large pulsation amplitudes can also have negative deterministic growth
rates.

In the deterministic case, typical thermoacoustic systems undergo a supercritical
Hopf bifurcation, and under the often valid reasonable approximations of a weakly
nonlinear expansion and a third-order cubic truncation of the heat release rate
response, we find that saturated limit-cycle amplitudes scale with the square root
of the linear growth rates at the Hopf point, i.e. Alc ∝

√
σdet,lin. This is why growth

rates are often representative also of the nonlinear behaviour of the system in the
deterministic case. This does not hold anymore in the stochastic case when noise is
considered, because they are not linked with the amplitudes of oscillation, which are
affected by the noise level.

We now succinctly apply known results reviewed by Roberts & Spanos (1986).
We consider an equivalent formulation of (2.35b) which, instead of studying the
evolution of the process A(t), studies the evolution of the transition density function
of A, denoted as P̃(A, t|A1, t1). This is the probability that the stochastic process will
assume value A at time t under the condition that it had value A1 at a previous instant
of time t1 < t almost surely. The equation governing P̃ is called the Fokker–Planck
equation,

∂P̃
∂t
=−

∂

∂A
[F(A)P̃] +

σ 2

4
∂2P̃
∂A2

. (2.36)

Since the stochastic forcing ξ is stationary, with time, the transition density function
P̃(A, t|A1, t1) converges to the stationary density function P(A) which does not depend
on the previous value A1 at time t1. We focus on stationary solutions in the following,
and refer to P(A) by the more familiar PDF. By definition of stationarity, P(A) does
not depend on time, and the term on the left-hand side of (2.36) is zero. We then
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integrate from A to ∞, and, under reasonable assumptions on the behaviour of P(A)
for A→∞, we obtain

F(A)P(A)=
σ 2

4
dP(A)

dA
. (2.37)

Noiray & Denisov (2017) discuss how to extract the linear growth rate of the
deterministic part of the system. To isolate this quantity, one sets to zero the
stochastic term σ 2/4A term in (2.35c) and then observes that in the linear regime,
the governing equation of A of the deterministic part of the system is simplified to
Ȧ = (1/2)Re[S(A)]A. It follows that limA→0+ (1/2)Re[S(A)] is the linear growth rate
of the amplitude equation in the absence of noise, which is also the linear growth
rate of the pressure η̇. One can then calculate this deterministic linear growth rate
from (2.35c) and (2.37),

σdet
lin
= lim

A→0+

1
2

Re[S(A)] = lim
A→0+

F(A)
A
−
σ 2

4A2
= lim

A→0+

σ 2

4A

[
d ln P(A)

dA
−

1
A

]
. (2.38)

It is apparent how this is difficult to estimate accurately: mathematically, because one
needs to estimate numerically the tail for A→ 0+ of P(A), its derivative, and estimate
the limit, which takes on an indeterminate form; physically, because this linear regime
of the system when the term is shut off is just a mathematical abstraction, the system
is never at A= 0, and we can characterize the system only where we observe it, with
higher accuracy wherever we have longer observation.

We apply separation of variables on (2.37), integrate, and calculate the exponential
on both sides, and obtain

P(A)= kc exp
(

4
σ 2

∫ A

F(A′) dA′
)
, (2.39a)

where kc is such that
∫
∞

0
P(A) dA= 1. (2.39b)

Here, kc is an integration constant such that (2.39b) holds. As discussed by Roberts &
Spanos (1986), the solution (2.39) accounts also for systems with hysteretic behaviour,
i.e. that would be multistable in the absence of the noise term (Lieuwen 2002; Moeck
et al. 2008; Boudy et al. 2011a), and to the case where the noise is not white. The
solution (2.39) was presented in thermoacoustics in a slightly different form by both
Lieuwen (2001a, 2003b) and Noiray & Schuermans (2013a). In these articles, the
projection reviewed by Culick (1976) is used, which leads to the time derivative
∂q[p(t)]/∂t = (∂q[p]/∂p)(∂p/∂t) of the fluctuating heat release rate appearing in the
equations instead of the fluctuating heat release rate q[p(t)] itself, as we detailed at
the end of § 2.4. In the form presented here, the describing functions of the flame
response and the acoustic losses, both projected on the mode shape, appear directly
in the expression of F in (2.35c), which ultimately contributes to the PDF in (2.39).

In this subsection, we have presented how to calculate the PDF P(A) of the slowly
varying acoustic pressure amplitude A for a thermoacoustic system that is oscillating
with a single dominant peak. We have shown how deterministic linear growth rates are
hard to estimate based on P(A) and are less representative of the nonlinear state of
the system when noise is considered. When predicting P(A), one needs the describing
functions of the flame and of the losses, the level of background combustion noise σ
and the acoustic pressure mode shape ψ to calculate F using (2.35c) and (2.30a), and
substitute it in (2.39). The problem can also be approached the other way round, i.e.
one can reconstruct F from the time series of an acoustic pressure sensor measuring
a self-excited thermoacoustic system, which is discussed next.
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2.8. System identification
This subsection drives the experimental validation presented in § 3 and discusses how
one can identify the projected flame and acoustic losses describing functions.

Given a thermoacoustic system oscillating at ω, one can first estimate the PDF P(A)
from the slowly varying acoustic pressure amplitude A(t) and estimate σ/

√
2 as the

standard deviation of the process A(t)ϕ̇(t). The function F(A) can then be calculated
from (2.37) as

F(A)=
σ 2

4
d ln P(A)

dA
. (2.40)

Since σ has been identified, one can calculate S(A) from (2.35c). Assuming that
the acoustic damping is linear, one observes from (2.33) that the nonlinear part of
S matches the nonlinear part of the projected flame response that contributes to the
Rayleigh criterion. One can then judge the type of nonlinear saturation response
due to the flame, e.g. smooth, cubic, strongly nonlinear/abrupt, decreasing and then
increasing, etc.

2.9. Prediction for a change in the system
A design change that does not affect the flame response is now considered. As
long as this design change is small, we can assume that the effect of the change
will appear on the right-hand sides of (2.23) and (2.24) as a perturbation term. For
example, the effect of a change in the geometry of the combustor is discussed by
Morse & Feshback (1953b, p. 1052). As a mitigation strategy for pulsations, one
often considers the addition of acoustic damping elements, e.g. acoustic liners or
Helmholtz resonators. To drive the experimental validation of § 3, we focus here on
the addition of a Helmholtz resonator on the wall of the combustor.

The resonator consists of a cavity connected to the combustor with a duct, called
the neck of the damper. On the combustor wall, the damper neck occupies a surface
Sd on the boundary ∂Ω . The damper has a much smaller neck diameter than the
wavelength of the thermoacoustic mode it is tuned for, so that the acoustic mode ψ
is approximately constant on the surface Sd, and one can express the acoustic velocity
u⊥ orthogonal to Sd in terms of the reduced admittance of the whole damper, in the
same way as the outlet boundary condition discussed after (2.4). Then, there is one
extra term on the right-hand side of (2.29),

c
Λn

∫
damper

neck

Y[η̇ψ]ψ dS=
cSd

Λ
Y[η̇ψ(xd)]ψ(xd)=Ypr[η̇ψ(xd)]ψ(xd), (2.41)

where we have introduced Ypr for brevity, and xd is the location of the centre of the
damper neck on the boundary ∂Ω . This leads to an additional term in (2.35c),

F](A)= 1
2 Re[Ypr[A|ψ(xd)|]]Aψ(xd)

2, (2.42)

where Ypr is the describing function of Ypr. Properly tuned dampers have a negative
Re[Y] (Bothien, Noiray & Schuermans 2013, p. 6), so that Re[Ypr[A|ψ(xd)|]]< 0. It
follows that (2.42) leads, as expected, to a damping term in (2.35b). The predicted
PDF after the design change is

P](A)= k]c exp
(

4
σ 2

∫
F(A′)+ F](A′) dA′

)
, (2.43)
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First combustor Second combustor

Compressor High pressure turbine Low pressure turbine

Longitudinal section of the GT26 gas turbine Sensor location

(a) (b)

FIGURE 1. (Colour online) (a) Sketch of the gas turbine. This paper discusses
thermoacoustic instabilities in the second annular combustor only, referred to simply as
the combustor, before and after the installation of Nd= 13 Helmholtz resonators. (b) Zoom
on a quarter of the cross section of the combustor showing the azimuthal location of the
sensors (diamonds).

where k]c is a new normalization constant such that (2.39b) holds on P]. One can then
evaluate from P](A) the expected mean value and the expected value for which the
cumulative distribution function of the new system reaches a fixed percentile, say 98 %.
These values can be used to approve or reject the damper design. The prediction is
fully nonlinear and only assumes that the background noise is additive and that the
mode shape does not change after the addition of the damper.

3. Experimental validation

To validate the theory, we analyse the pulsation data of two tests of the Ansaldo
GT26 engine before and after the installation of a set of acoustic dampers, at the same
operating conditions. We present in figure 1(a) a sketch of the longitudinal section of
the engine, showing a first annular combustor connected to a second annular sequential
combustor through a high-pressure (HP) turbine. Güthe, Hellat & Flohr (2009) discuss
how sequential combustion systems operate compared with conventional systems with
only one combustor. This paper focuses on the second combustor, which has inlet
and outlet boundary conditions approximately choked, from now onwards referred to
simply as the combustor. During the first test, the combustor exhibits a third-order
n=3 azimuthal thermoacoustic mode that is linearly unstable and saturates nonlinearly
to a stochastic attractor. Dampers are then installed in a second test. We use the
pulsation data of the first test and the design of the dampers to predict the amplitude
PDFs of the second test and compare them with the measurements.

The fact that we first present the theory for an axial instability and then validate the
theory for an azimuthal instability should not worry the reader. The formal analogies
in the linear and nonlinear regimes of the low-order models of axial and azimuthal
low-frequency instabilities were mentioned first by Crocco (1969), and recently
rediscussed by Ghirardo et al. (2017). The validation on an azimuthal test case will
actually shed light on the strength of the nonlinear interaction between azimuthal
modes. The study of azimuthal thermoacoustic instabilities has been discussed in a
stochastic framework by Noiray & Schuermans (2013b) with a simpler flame model,
while similar equations discussing a rotational symmetric turbulent wake have been

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

17
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
95

.2
42

.2
13

.1
16

, o
n 

09
 Ju

n 
20

18
 a

t 0
0:

54
:2

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.173
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
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presented by Rigas et al. (2015), Brackston et al. (2016) and Rigas, Morgans &
Morrison (2017).

We need, however, an additional assumption regarding the flame model as compared
with § 2.2. A thermoacoustic instability of azimuthal type has an acoustic velocity
in the azimuthal direction that sweeps the flame in the transverse direction, i.e.
orthogonally to the mean flow field through the burner (Fanaca et al. 2010; Hauser,
Lorenz & Sattelmayer 2011). Under the assumption that the burners and the mean
flow field close to the burner are rotationally symmetric, the effect on the heat
release rate is zero in the linear regime, i.e. is only a nonlinear function of the
azimuthal velocity amplitude. This has been observed experimentally (O’Connor
& Acharya 2013; Saurabh et al. 2014) and proved theoretically (Acharya, Shin &
Lieuwen 2013; Acharya & Lieuwen 2014). Saurabh, Moeck & Paschereit (2017) and
Saurabh & Paschereit (2017) have shown that this effect is present at large amplitude
of transverse velocity. If this nonlinear effect leads to a reduced heat release rate
response, the nature of the azimuthal limit-cycle solution is found to change from
a spinning to a standing solution (Ghirardo & Juniper 2013). In the particular case
at hand, the sequential burner is symmetrical with respect to the azimuthal direction,
so that the effect can only be nonlinear. Existing numerical studies on this flame
(Kulkarni et al. 2014; Yang et al. 2015; Scarpato et al. 2016) have not specifically
studied the dependence of the flame response to transverse acoustic excitation. We
assume that this effect is not present and that the heat release rate model discussed
in § 2.2 is valid.

In § 3.1, we discuss the reconstruction of the two azimuthal thermoacoustic modes.
In § 3.2, the configuration of the dampers is presented and we justify why we study
the two modes separately. In § 3.3, we discuss the pulsation amplitude statistics and
compare them with the theoretical prediction.

3.1. Azimuthal mode reconstruction
To avoid systematic errors, we use only sensors of the same type, with the same
microphone holder design and that were acquired through the same acquisition chain.
Details of the sensors are discussed by Singla, Noiray & Schuermans (2012) and
their azimuthal positions are sketched in figure 1(b). Some sensors are located at
the same azimuthal position but slightly different axial position and overlap in the
figure. A first study ascertained that the different axial locations of the sensors do
not reflect in different amplitudes of pulsation at this frequency. We then conclude
that as a first approximation the mode amplitude is constant in the axial direction.
In the azimuthal direction, the farthest two sensors span ≈ 0.66 rad. This distance is
sufficient to reconstruct an n= 3 azimuthal mode because a quarter wave of the mode
spans a smaller angle, 2π/4n≈ 0.53 rad.

The pressure field is written as the sum of two modes with amplitudes η̇1(t) and
η̇2(t),

p(x, t)= η̇1ψ1(x)+ η̇2ψ2(x). (3.1)

We choose the two modes to be real valued and orthogonal, and such that their
maximum value in the azimuthal direction at the axial coordinate of the burners is
1. This leads to two standing modes, such that one mode has the pressure antinodes
where the other has the pressure nodes. We choose to study the pressure field as the
sum of two standing waves with pressure nodes and antinodes fixed in space, albeit
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one can also carry out the study in terms of two counter-rotating spinning waves. At
the burner outlet, the pressure field is

p(θ, t) = η̇1(t) cos(3θ − δ)+ η̇2(t) sin(3θ − δ), (3.2a)
pk(t) = p(t, θk) k= 1, 2, . . . ,Nsensors, (3.2b)

where δ is the orientation angle of the two modes and n= 3 is the azimuthal order
of the instability. The temporal evolution of the instantaneous values of the pressure
amplitudes η̇1(t) and η̇2(t) determines whether the whole pressure field p(t, θ) is a
standing wave, a spinning wave or a mix of both types of mode at each instant of time.
This aspect is discussed in detail by Ghirardo et al. (2016) for a symmetric combustor
without accounting for the background noise. We, however, focus here only on the
amplitudes of the individual modes, η̇j(t).

To extract the values η̇j(t), j = 1, 2, from the pressure readings pk(t), we apply
a multi-microphone method in the azimuthal direction and solve the overdetermined
system (3.2b) for η̇1,2(t) in a least-squares sense (Seybert & Ross 1977; Åbom 1992).
We do so for δ= 0 in a first step, and, in a second step, we calculate with a singular
value decomposition the value of δ that minimizes the cross-correlation between the
two time series η̇1(t) and η̇2(t). The two modes, shaped like cos(nθ) and sin(nθ) in
the frame of reference with the origin at θ = δ, correspond to the two singular values
of the singular value decomposition. In particular, δ is the angle for which the mode
shaped like cos(nθ) has the largest amount of energy and the other mode shaped like
sin(nθ) has the least amount of energy. The two modes before the installation of the
dampers were rather close in frequency, with

1fndim ≡
|f1 − f2|

( f1 + f2)/2
≈ 9.52× 10−4, (3.3)

consistent with the assumed approximate rotational symmetry of the system before
the installation of the dampers. After the installation of the dampers, the mean
frequency of oscillation ( f1 + f2)/2 was less than 2 % off from the value before their
installation, and the two modes were slightly off in frequency, but not significantly,
with 1fndim ≈ 1.49 × 10−2. We assume that these differences are negligible, and
approximate the oscillation frequency f of the modes before and after the installation
of the dampers with the mean frequency before their installation, and refer to this as
the oscillation frequency in the following. We present results in non-dimensional units,
by first applying a change of time variable so that the frequency ω = 2πf becomes
unity. We rescale the amplitudes by a fixed factor because we cannot disclose the
physical values of pulsation.

3.2. Governing equations
This subsection briefly recalls the governing equations for two degenerate azimuthal
modes in a rotationally symmetric combustor with a discrete number of flames. We
motivate why it is convenient and reasonable to model each mode separately and then
discuss how the installation of the dampers affects the equations.

The combustion chamber consists of Ns= 24 sectors, with one flame in each sector.
The equations for the two azimuthal modes before the installation of the dampers are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

17
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
95

.2
42

.2
13

.1
16

, o
n 

09
 Ju

n 
20

18
 a

t 0
0:

54
:2

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.173
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


234 G. Ghirardo, F. Boudy and M. R. Bothien

η̈1 +ω
2
0η1 =

Ns∑
j=1

Qpr[η̇1cj + η̇2sj]cj − αη̇1 + σξ1, (3.4a)

η̈2 +ω
2
0η2 =

Ns∑
j=1

Qpr[η̇1cj + η̇2sj]sj − αη̇2 + σξ2, (3.4b)

where cj = cos(nθj) and sj = sin(nθj), with θj being the azimuthal positions of the
Ns = 24 sectors, and n = 3 is the order of the azimuthal instability. Equations (3.4)
are the equivalent of (2.30) for a rotationally symmetric annular system. They can be
obtained by applying the same method as discussed in §§ 2.4–2.6, by accounting for
two dominant degenerate modes ψ1,2 instead of one and exploiting the fact that they
are orthogonal.

One can, in principle, proceed similarly to § 2, apply temporal averaging and
consider the corresponding Fokker–Planck equation for the coupled oscillators.
However, we do not have an analytical nonlinear deterministic solution that extends
the work of Ghirardo et al. (2016) to non-rotationally symmetric systems, or an
analytical solution for the resulting Fokker–Planck equations when stochastic noise
is considered. The difficulty in expressing this solution arises because the equations
depend now on three variables, the two amplitudes and the phase between the
two oscillators. However, we notice that the interaction between the modes is only
nonlinear, i.e. absent in the linear regime (Schuermans et al. 2006, p. 8), and then
weaker than the response of each oscillator to itself. We then decide to ignore this
interaction, leading to an uncoupled equation for each mode. We will discuss this
hypothesis further in § 3.4.

After the first test, Nd= 13 multivolume Helmholtz resonators with the same design
are installed in the combustion chamber. Each damper is placed on the combustor
walls, and azimuthally in the middle of each sector, like the burners. The contribution
to the dynamics of each damper is described by (2.41) and (2.42). We assume that the
mode shape is not substantially affected by the addition of the dampers. A posteriori,
this is in line with the finding in § 3.1 that the frequencies of the two modes are
indeed negligibly affected, suggesting that the same applies to the mode shapes too.
This is also consistent with previous studies on industrial combustors, where the
frequency was not affected by the addition of Helmholtz dampers (Bellucci et al.
2004, 2005). We, however, point out that the mode shape can be affected by the
addition of the dampers. For example, Helmholtz dampers with a much larger size,
not representative of industrial configurations, can lead to a significant change of the
acoustic mode shape (Zahn et al. 2016, figure 14).

The admittance Y appearing in (2.42) is then calculated at the oscillating frequency
of the first test and is modelled accounting for the nonlinear amplitude response, the
mean bias flow through the neck and the acoustic end corrections (Bellucci et al.
2004; Bellucci 2009). The damper design is not discussed in detail here because it
does not constitute an element of novelty as compared with the existing literature.
We refer the reader to Bothien et al. (2013) and Bothien & Wassmer (2015), where
the methodology is discussed and tested in the linear and nonlinear regimes on
experimentally measured reflection coefficients of dampers mounted on impedance
tubes.

Since the mode shape is constant in the axial and radial directions, both modes have
the same value at the flame and at the damper neck in each sector, i.e. η̇1cj and η̇2sj

respectively for the two modes at the jth damper. This means that the argument of
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FIGURE 2. (Colour online) (a) Positions of the pressure antinodes of only one of the
two standing modes that we decompose the pressure field in (the other mode is rotated
by π/6). The mode with the largest amplitude reconstructed from the time series (squares)
and the mode predicted to be least damped (crosses) have approximately the same
orientation. (b) Damping functions F](A) characterizing the effects of the dampers on
each of the two modes, in the linear approximation (dashed lines) and the fully nonlinear
(continuous lines) case. The damping functions are different for the two modes because
the azimuthal pattern of the dampers is not uniform. The quantity limA→0+ −F](A)/A is
the linear deterministic growth rate reduction gained by the application of the dampers on
each mode, respectively 3 % and 4.8 % of 2πf for the least and most damped modes.

Ypr in (2.41) is η̇1cj or η̇2sj, while the term ψ(xd) outside the square brackets is cj
or sj, depending on whether we are considering the equation for {η̇1, ψ1} or {η̇2, ψ2}.
We then consider the equation for the first mode, and notice that after the installation
of the dampers there is an extra term in the equations which is the contribution of
the changed boundary conditions at the damper necks. In particular, there is an extra
term like (2.41) for each of the dampers in (3.4a),

η̈1 +ω
2
0η1 = S[η̇1] + σξ1, (3.5a)

S[η̇1] =

Ns∑
j=1

Qpr
[
η̇1cj
]

cj − αη̇1 +
∑

k

Ypr [η̇ck] ck, (3.5b)

where k is summed only over the sectors where the dampers are mounted, and a
second equation for the other azimuthal mode follows similarly. One observes trivially
that dampers positioned where the coefficient ck= cos(nθk) is small or zero have little
or no damping effect. We choose to orient the frame of reference so that one of the
two modes is maximally damped by the last summation term in (3.5b) and the other
oscillator is the least damped. The two modes are differently damped because the
azimuthal pattern of the Helmholtz dampers is not uniform, i.e. some sectors have
a Helmholtz damper and some others do not. In this optimal frame of reference, the
orientation of the least damped mode is presented in figure 2(a).

Finally, the extra terms described in (2.42) for the two azimuthal modes are

F]
c(A) =

Nd∑
k=1

1
2

Re[Ypr[A|ck|]]Ac2
k, (3.6a)

F]
s (A) =

Nd∑
k=1

1
2

Re[Ypr[A|sk|]]As2
k . (3.6b)
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FIGURE 3. (Colour online) First test case, before damper installation. (a) Estimated PDFs
of the acoustic pressure amplitudes A1 and A2 of the two azimuthal modes. The two
PDFs are rather close, consistent with the system being axisymmetric before the damper
installation. The vertical dot-dashed and dashed lines are the mean and 98th percentile
values of the PDF. We present in (b,c) with black dots the histograms of the processes
A1ϕ̇1 (b) and A2ϕ̇2 (c). The magenta lines are the normal distributions with estimated
standard deviation σ/

√
2 that best fit the histograms.

The two functions are presented in figure 2(b). They are mostly linear in the
investigated amplitude range.

3.3. Amplitude statistics
Each of the two azimuthal modes η̇j is treated as a stationary ergodic process (Lin
1967). We reasonably assume stationarity because the engine was operated at fixed
conditions during the acoustic pressure time series acquisition, and we then expect
the statistics of the process to not change over time. We assume ergodicity so that we
can estimate the statistical moments E[η̇n

j P(η̇j)] of the process from the time averages
of the moments of a sufficiently long time series. We tested this by carrying out a
statistical bootstrapping procedure on the statistics discussed in this section, showing
very good convergence of the estimated PDF. We note that it is harder to obtain
convergence for cases like transients and the occurrence of strong pulsations over a
observation time that is very short because of the danger of structural damage in the
engine/experiment. Moreover, noisy systems that would be stable but exhibit bursts of
oscillations with intermittent behaviour (Kabiraj et al. 2012; Kabiraj & Sujith 2012)
when noise is considered are a challenge. The signals η̇j are band pass filtered in the
range [3ω/4, 5ω/4] to isolate the oscillating mode. The analytic signals are calculated
and from them the slowly varying amplitudes Aj(t) and slowly varying phases ϕj(t) are
extracted. We then apply kernel density estimation (Botev, Grotowski & Kroese 2010)
on the statistical sample {Aj,n, n= 1, 2, . . . , N} and present the two estimated PDFs
in figure 3(a). The application of bootstrapping on the sample population revealed
negligible deviations from the PDFs, so that we conclude that the time series are
long enough to guarantee good convergence. For each PDF of figure 3(a), we plot
with vertical lines the mean value E(A) and the 98 % percentile value. These values
characterize respectively the level of average pulsation and the level of rare pulsation,
which are useful for industrial applications.
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FIGURE 4. (Colour online) After damper installation, observed in the optimal frame of
reference. (a) Comparison between predictions (grey) and measurement (black) for the
more damped mode. The line styles have the same legend as figure 3(a). We find a
slight overprediction of the predictions compared with the measurements in terms of PDFs,
mean values and 98th percentile values. (b) The same as (a) for the least damped mode,
which is oriented as in figure 2(a). The blue and red colours correspond to the lines of
figure 2(b).

We present in figure 3(b) with black dots the histogram of the two processes A1ϕ̇1
and A2ϕ̇2 with a bin size that is optimal, as discussed by Shimazaki & Shinomoto
(2007), together with the normal distribution that best fits the histogram points in a
least-squares sense. The identified standard deviations σ1/

√
2 and σ2/

√
2 of the two

distributions are then used in (2.40) to calculate F1(A) and F2(A).
The two sets of objects {F1(A), σ1} and {F2(A), σ2} presented in figure 3 characterize

the state of the system before damper installation and are very similar, suggesting
rotational symmetry of the system in the first test, often assumed in low-order models
of azimuthal instabilities. Ideally, we would like to have only one set {F(A), σ }
describing the state of the system in the first test, and then use (2.43) on this state
with each of the two damping functions F](A) presented in figure 2(b) to predict the
amplitude of each of the two modes after damper installation in the second test. Since
it is hard to decide how one would best average the two sets, we prefer to make two
predictions, each based individually on one of the two sets. We present in figure 4(a)
the comparison of the two predicted P(A) curves for the least damped mode with
the measurements. The installation of the dampers leads to a significant reduction
of pulsation amplitudes. The agreement of the PDFs between the two predictions
and the measurements is good. The predicted integral quantities of the PDFs, i.e. the
mean values (dash-dotted lines) and the 98th percentile values (dashed lines), have in
the worst case 30 % accuracy and overpredict the measured ones, suggesting that the
damper design is conservative.

The same method was applied also to a second test case, based on another two
comparable time series before and after the damper addition. This second test case was
at different operating conditions from the first test case presented in figures 3 and 4.
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FIGURE 5. (Colour online) Second test case. (a) The PDFs of the two azimuthal
modes before the damper installation. (b) Comparison between predictions (blue) and
measurements (black) for the more damped azimuthal mode. The line styles have the
same legend as figure 3(a). We find quite a good agreement between predictions and
measurements in terms of PDFs, mean values and 98th percentile values. (c) The same
as (b) but for the least damped azimuthal mode.

The amplitudes of pulsation before damper installation are presented in figure 5(a).
Compared with the first test case in figure 3(a), the two azimuthal modes oscillate at a
smaller amplitude and the two PDFs differ quantitatively between each other, implying
that the system is less rotationally symmetric in this second test case. Nonetheless, we
find that after the damper installation, the reconstructed mode orientation matches the
predicted orientation. The orientation figure is very similar to the one presented in
figure 2(b) and is thus not reported. The comparison of the predicted amplitudes with
the measured amplitudes after the damper installation is presented in figure 5(b,c). The
maximum error drops to 13 %.

This is the first time that a comparison between predictions and measurements of
PDFs of acoustic pressure amplitudes has been presented in thermoacoustics, and we
believe that this level of accuracy is still remarkable. In particular, the predicted shape
of the distribution resembles strongly the measured one in both test cases, and in each
test case, the error is similar between the least and most damped modes. Among the
factors that may contribute to a systematic overprediction, we mention that the second
test was carried out at an operating mean pressure in the combustion chamber that was
a few per cent off from the first test. Another possible reason relates to the saturation
of the damper response in the nonlinear regime. A gentler saturation would lead to
steeper functions F] in figure 2(b) and ultimately to lower predicted amplitudes.

3.4. Weak interaction of the two modes
Upon request of a referee, we further discuss the nonlinear interaction between the
two azimuthal modes. We consider the case presented in figure 4, where the system is
asymmetric, i.e. after damper installation. We present in figure 6 the joint PDF (JPDF)
P{A,B}(A, B), similarly to previous studies (Noiray & Schuermans 2013b; Worth &
Dawson 2013). We present in figure 6(b) the product of the two marginal PDFs P(A)
and P(B) of the two processes (black lines of figure 4). This product would be the
JPDF of the system in the case where the two processes A and B were independent.
We present in figure 6(c) the difference between the two bidimensional functions
and observe how the two functions are really close. There is no clear pattern in
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FIGURE 6. (Colour online) Factorability of the JPDF of the test case of figure 4. (a)
The JPDF of the two-dimensional stochastic process {A, B}, estimated with a 50 × 50
bidimensional histogram. (b) The product of the two marginal PDFs of the two processes
A and B. (c) The difference between (a) and (b): no clear pattern is observed in the error,
suggesting that the JPDF is indeed factorable.

the difference between the two, and the non-exact match can probably be attributed
to the fine grid size of the histogram compared with the time series length. This
suggests that the JPDF of figure 6(a) is indeed factorable, i.e. can be expressed in
terms of the marginal PDFs as in figure 6(b). We cannot, however, take this evidence
to imply that the two processes are independent, because the factorability of the JPDF
of two processes as the product of the marginal PDFs of the two is only a necessary
condition for the independence of the processes (it is also sufficient in the case where
one considers two random variables instead of two stochastic processes). Indeed, we
know that a thorough independence test of the two processes would prove them not
to be independent, because of the nonlinear interaction in (3.4). We can, however,
take figure 6 as additional evidence that the interaction between the two azimuthal
modes is indeed weak. This suggests that the marginal PDFs of the amplitudes of
the two azimuthal modes can be characterized by a model where such interaction is
neglected, as done in this paper.

4. Conclusions
We study thermoacoustic instabilities where only one dominant frequency of

oscillation is excited in the system and with a zero-Mach-number assumption, which
is reasonable in land-based gas turbine combustors. In particular, we model the
thermoacoustic oscillation with one Galerkin mode, neglecting the change in the
mode shape due to the flame response. We model the heat release rate fluctuations
coming from the flame as the sum of a deterministic and a stochastic component. The
deterministic component is a nonlinear time-invariant operator of the acoustic pressure
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at the flame location in the time domain, then mapped to a describing function in
the frequency domain. The stochastic component is the background combustion noise
that is present regardless of the acoustic excitation of the flame and is modelled as an
additive white Gaussian stochastic process. From the governing equations, we obtain a
Galerkin series that accounts for spatially varying temperature and density fields. We
treat the thermoacoustic equations as a weak perturbation of the fluctuating pressure
equation and truncate the Galerkin series to a single-mode approximation. We obtain
a single oscillator model governing the acoustic pressure amplitude of the perturbed
Galerkin mode. In the oscillator equations, the heat release rate appears directly in
the equations, as opposed to the current literature where its time derivative usually
appears. We show how one can predict the probability density functions (PDFs) of
the acoustic pressure amplitude, and also recover the projected describing function
driving the instability, from experimental time series of a self-excited combustor. We
show that the linear growth rates of the system when noise is not considered are hard
to estimate from time series data based on mathematical and physical arguments. We
show also that linear growth rates are less representative of the nonlinear state of the
stochastic system compared with the case of deterministic systems, where noise is
absent.

The theory is then tested on an azimuthal thermoacoustic instability in a full
scale annular combustor, under the assumption that the interaction between the two
azimuthal modes is negligible because it is only a nonlinear effect. We measure
the state of the system before the installation of a set of Helmholtz resonators and
then make a prediction accounting for the response of the dampers in the linear and
nonlinear regimes, assuming that only the orientation of the thermoacoustic modes,
and not their shape, is affected by the dampers. We find good agreement between
predictions and measurements, in terms of both the orientation of the azimuthal
modes and the PDFs. This suggests that the nonlinear interaction between the two
modes may indeed be neglected for the purpose of amplitude prediction. Numerical
simulations of stochastic low-order models can further substantiate this experimental
finding on the strength of this nonlinear interaction.

Future work should focus on a heat release rate model that is able to capture the
effect of transients. In the simplest case, the heat release rate response model that
captures this effect would depend on the acoustic pressure or velocity only via a delay
operator. Crawford, Verriest & Lieuwen (2013) predict the statistics of an oscillator
forced by a delayed term and Gaussian noise, but in the linear regime only. Ghirardo
et al. (2017) discuss the effect of a delayed flame response on the system in the
nonlinear regime, but do not discuss the effect of additive white Gaussian noise. There
is a need to study the effect of this delay in the nonlinear regime and accounting
for additive white Gaussian noise. The theoretical prediction of exact statistics of self-
excited oscillations with a delayed forcing term may prove difficult, but the strength
of this effect on selected points of the parameter space should be reasonably easy to
investigate numerically.

Appendix A. Choice of boundary conditions for the Galerkin modes

In § 2.3, we impose that ∇ψ · n = 0 on the boundary ∂Ω . This matches the
boundary condition of the original problem (2.3) on the wall of the combustor, but
does not match the boundary conditions at the inlet and outlet.

The boundary conditions are usually chosen such that the homogeneous problem
in § 2.3 is self-adjoint, and then the resulting eigenmodes {ψn} are orthogonal and
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can used as a basis. Morse & Feshback (1953b, § 9.2) showed that a sufficient
condition to do so is to choose Dirichlet or Neumann boundary conditions on
the boundary ∂Ω . Nicoud et al. (2007, Appendix B, equation (B8)) more recently
pointed out that the choice of a complex reduced impedance Z = iR0ω, R0 ∈ R, also
guarantees orthogonal eigenmodes. One chooses among these options the one that
best resembles the boundary condition of the original problem. On the walls of the
combustor, the choice is trivial, because Neumann boundary conditions match the
boundary conditions of the problem exactly. At the inlet and the outlet of the domain,
the choice depends on the actual boundary conditions of the problem at hand. Taking
the Fourier transform of (2.4), and substituting on the left-hand side the expression
for û1 from the Fourier transform of (2.3b) and on the right-hand side u⊥ =Yp with
Y defined in (2.5), we obtain

−∇p̂1 · n
ρiω

=−
R− 1
R+ 1

p̂
ρ0c

. (A 1)

Multiplying both sides by ρ0iω and moving the terms, we obtain

∇p̂1 · n+ i
1−R
1+R

kp̂1 = 0, (A 2)

where we have introduced the wavenumber k = ω/c. This expression matches
equation (9.2.1) of Morse & Feshback (1953b),

∇p̂1 · n+ f p̂1 = 0, (A 3)

where f ≡ i((1−R)/(1+R))k. We observe that the absolute value of the factor f
depends on the value of the reflection coefficient on the boundary and the wavenumber
k. For the application of this paper, R is very close to unity because the flow field
is close to choked (Marble & Candel 1977), and f is small. It follows that (A 3)
is a perturbation of the Neumann boundary condition ∇p̂1 · n = 0, which is then
chosen as the boundary condition for the homogeneous problem. For f large, one
would instead impose Dirichlet boundary conditions. We refer the reader to Morse
& Feshback (1953b, § 9.2) for a discussion of the convergence rate of either option.
A discussion of how a linear combination of Galerkin modes can approximate the
solution, despite the fact that each Galerkin mode does not respect the actual boundary
condition, can be found in Culick (2006, Annex F).
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