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Rotationally symmetric systems can exhibit acoustic fluctuations in the azimuthal
direction. In experimental works the nature (standing or spinning) of these fluctuations is
often described by a set of indicators. These indicators either depend on the chosen frame
of reference or are not state space variables for the acoustic field. Conversely, in theoretical
works the field is projected on two orthogonal modes, and the system is characterized in
terms of two amplitudes and one phase difference. Also in these works the nature of the
field is not a state space variable but a derived quantity. Moreover the phase difference
between the two modes is undetermined when one of the amplitudes of the two modes
is zero, making the phase space ill-posed. We present a solution to these limitations, and
we show how the acoustic field can be embedded in quaternion algebra, by calculating
a suitable analytic signal of the complex-valued embedding of the acoustic field. This
allows us to map the state of the system to a point that moves as function of time on
a two-dimensional sphere in three-dimensional (3D) space, the Poincaré-Bloch sphere.
To each state of the system corresponds just one point in this 3D space, which is then a
well-posed phase space. We term the spherical coordinates of the point the amplitude of
oscillation, the nature angle, and the orientation angle. The amplitude of oscillation of the
system is the radius of the sphere. The nature angle is the latitude angle and positions the
point closer to the equator (pure standing mode states) or closer to the poles (pure spinning
mode states). The orientation angle is the longitude angle and describes the position of
the pressure antinodes of the part of the acoustic field that is standing. These coordinates
have a straightforward physical interpretation, can be easily calculated from experimental
data, and are at the same time state space variables of a simple and elegant ansatz that
can be used in low-order models. We also present an example of characterization of an
experimental azimuthal thermoacoustic instability.
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I. INTRODUCTION

Many combustion systems exhibit rotational symmetry, either full or discrete, around an axis of
symmetry. For example, in the case of low-frequency azimuthal instabilities occurring in annular
combustors the symmetry axis is the axis of the gas turbine rotor [1–3]. In the case of high-
frequency, localized azimuthal instabilities the axis is often the axis of a burner or the axis of one can
in can-annular combustors [4–6]. In both cases this symmetry can be exact or approximate [7–10]. In
the exactly symmetric case some eigenmodes and eigenfrequencies of the system appear in pairs and
have the same value (degenerate modes). In the approximate symmetric case the eigenfrequencies of
the pairs are close (close to degenerate modes). We focus in this paper on one pair of degenerate or
close to degenerate modes, which are solutions of the linearized problem and share approximately
the same eigenfrequency.
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In the linear regime one can sum the two modes multiplied with arbitrary constants and still
obtain a solution at only one frequency. Depending on the constants of this linear combination the
whole acoustic field can be (1) a standing wave with pressure nodes and antinodes fixed in space,
(2) a wave with nodes rotating in either counterclockwise or clockwise direction at the speed of
sound, called the spinning wave by Crocco [11], or (3) a sum of a standing and a spinning wave.
We refer to the standing or spinning nature of the acoustic field simply as the nature of the field in
the following, and we will refer to the acoustic pressure simply as pressure. In the linear regime the
nature of the acoustic field is undefined, because the coefficients can be chosen at will and lead to a
different nature.

In the nonlinear regime, and in the absence of background noise or at low levels of noise,
different factors push the system to settle for a certain nature, e.g., loss of symmetry [7,8], transverse
forcing on the flame [12], or nonlinear saturation to axial forcing of the flame [13]. Here and in the
following, we will use the term “flame” to refer to the fluctuating heat release rate response of the
flame to the acoustic field.

For combustors exhibiting non-negligible levels of background noise we know that the solution is
not deterministic anymore [14], and we currently do not have any theoretical prediction of the mode
nature. Experimental works characterize the nature of the acoustic field with a set of indicators
that we review in Sec. II. Theoretical studies project the governing equations on two orthogonal
modes, which allow only an indirect calculation of the mode nature. This, and other shortcomings
of orthogonal projections in a stochastic setting, are discussed in Sec. III. In Sec. IV we propose an
ansatz such that the nature of the acoustic field is a state space variable. We make use of a quaternion
valued analytic signal as proposed by Flamant et al. [15,16] and exploit a polar representation
of a quaternion number as proposed by Bulow and Sommer [17]. The ansatz offers a simpler
interpretation of the state of the system, either as an ellipse in the complex plane or as a point
on a two-dimensional (2D) sphere in three-dimensional (3D) space. We draw links with other fields
of science where these interpretations are well known. In Sec. V we apply the proposed ansatz to
the analysis of an acoustic azimuthal instability of an industrial annular combustor. In Sec. VI we
draw our conclusions.

II. REVIEW OF INDICATORS OF THE NATURE OF THE ACOUSTIC FIELD

The pressure field in cylindrical coordinates is p(z, r, θ ) where z, r, θ are the axial, radial, and
azimuthal coordinates, respectively, and we define the counterclockwise direction as the direction
in which the azimuthal coordinate θ grows. Because the modes are of azimuthal type, we focus in
the following only on the dependence of the pressure field on θ , by studying p(θ ) ≡ p(z̃, r̃, θ ) with
z̃ and r̃ fixed coordinates, e.g., the positions of the burners in an annular combustor. The theoretical
investigation of Schuermans et al. [18] decomposes the pressure field for one dominant mode p(θ, t )
in two orthogonal eigenmodes:

p(θ, t ) = ξ1(t ) cos(nθ ) + ξ2(t ) sin(nθ ), (1)

where n is the order of the azimuthal mode considered, and cos(nθ ) and sin(nθ ) are the two
orthogonal modes. This decomposition can be obtained, for example, from a truncation of a series
expansion in cylindrical coordinates to the dominant terms [19,20]. The state of the system is
determined by the amplitudes of the two oscillatory coefficients ξ1, ξ2 and the phase between them.
We will reconsider orthogonal projections in Sec. III.

Schuermans proposed a so-called mode indicator, later used by Poinsot et al. [21] to classify
the nature of the mode (standing or spinning) as a function of time for a short time series of an
azimuthal instability. Worth and Dawson [22] apply a classification based on threshold values of the
same indicator to classify the mode in standing and spinning. The indicator is defined as

C(t ) = 1

N

∑
m

pm(t )einθm, (2)
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where {pm(t ) ≡ p(θm, t ), m = 1, . . . , Ms} are Ms pressure sensors positioned at the same axial
location but at different azimuthal coordinates θm around the annulus and i is one of the two
solutions of i2 = −1. In the same work Worth and Dawson [22] also discuss how the ratio A+/A−
of the amplitudes of the two counter-rotating waves is linked to the mode nature. The phase of the
complex indicator C has a slope of ±ωt for spinning waves and is constant for standing modes.
This indicator has the shortcoming of not being valid if the pressure sensors pm are not equispaced
as detailed in Appendix A, as is often the case in industrial applications.

Bourgouin et al. [23] redefine the spin ratio to characterize the nature of the mode as

s ≡ A+ − A−

A+ + A− , (3)

where A+ and A− are the slowly varying amplitudes of the two counter-rotating spinning waves that
will be discussed later in Sec. III B. The spin ratio s equals ±1 for spinning modes and 0 for standing
modes. This indicator is a nonlinear function of the amplitudes A± and is independent of the angle
of the chosen frame of reference. It differs from the original spin ratio proposed by Evesque et al.
[24] because it allows one to distinguish between clockwise and counterclockwise spinning modes.
More recently Refs. [25,26] also discuss the dynamics of an annular combustor based on the spin
ratio defined in Eq. (3).

The indicator C presented in Eq. (2) and the spin ratio s presented in Eq. (3) are useful
tools to understand azimuthal instabilities. They are, however, derived quantities, i.e., it is not
straightforward to express the acoustic field p as a function of them as in p(s) or p(C). In particular,
s in Eq. (3) depends nonlinearly on the amplitudes A+(t ) and A−(t ). The indicator C depends on
the pressure field p, for which a suitable ansatz must be chosen in turn. These are not problems
per se but make the validation of theoretical models cumbersome, as we discuss next first for the
deterministic case, and then for the stochastic case. The orthogonal decomposition (1) suffers from
other problems, discussed later in Sec. III.

In a deterministic framework, valid for systems exhibiting low levels of background noise, one
can derive from the governing equations low-order dynamical systems [8,13,18] and quantitatively
predict the solution. Then the indicators of this solution can be calculated and by comparing them
with the experimental results one can assess the validity of the theory. For example, the theory of
Ghirardo et al. [13] of rotationally symmetric annular combustors with a flame response depending
only on the pressure has been validated against the Micca experiment equipped with perforated
plates described in Ref. [27] by Ghirardo et al. [13] for the spinning case and by Laera et al. [28]
for the standing case.

When one considers instead azimuthal instabilities with a non-negligible level of background
noise, the prediction of the state of the stochastic system is necessarily probabilistic. In this case
one aims to theoretically predict the probability density functions (PDFs) of the state variables of
the dynamical system, which define the pressure field. Based on these PDFs one can predict the
PDF of the indicator and compare it with the experimental PDF.

In both the deterministic and the stochastic case this comparison allows us to discuss the validity
of the model only indirectly because the indicators are derived quantities. The main result of this
work is to present a parametrization of the acoustic field that (1) is easy and fast to calculate, (2) does
not depend on the frame of reference, (3) provides a good indicator for the standing or spinning
nature, and (4) can be used as ansatz in low-order dynamical systems in a natural way. This allows
us to directly compare model state variables with experimental values.

III. SHORTCOMINGS OF STUDYING AZIMUTHAL INSTABILITIES
AS A SYNCHRONIZATION PROBLEM

This section discusses in Secs. III A and III B how to express the acoustic field as a linear
combination of orthogonal modes, respectively, standing and spinning modes. We introduce the
usage of the Hilbert transform and of the analytic signal and the concepts of slowly varying

113202-3



GIULIO GHIRARDO AND MIRKO R. BOTHIEN

amplitude and phase of each of the two oscillating modes, which will be needed in Sec. IV. In
Secs. III C and III D we discuss some shortcomings that arise when the system is studied in terms
of the amplitudes of the two modes and their phase difference.

A. Projection on two standing modes

The pressure field p appearing in Eq. (1) has two distinct timescales, a fast and a slow one.
The fast timescale is one acoustic period T = 2π/ω. Because thermoacoustics in gas turbines is
typically only weakly nonlinear, in one period T the amount of acoustic energy added to the system
by the flame, or taken from the system by the acoustic losses, is small. Then the amplitude Am and
the phase ϕm of each mode vary slowly as compared with the timescale T . One can write

ξm(t ) = Am(t ) cos[ωt + ϕm(t )], m = 1, 2, (4)

where Am and ϕm are real-valued quantities. By substituting (4) into (1) we obtain

p(θ, t ) = A1(t ) cos[ωt + ϕ1(t )] cos(nθ ) + A2(t ) cos[ωt + ϕ2(t )] sin(nθ ). (5)

In low-order models of azimuthal instabilities one makes use of the ansatz (5) and of an additional
constraint on (Am, ϕm) to apply the method of averaging to the governing equations; see, e.g.,
Ref. [12]. One can introduce the phase difference

ϕ̃(t ) ≡ ϕ1(t ) − ϕ2(t ) (6)

describing the synchronization between the two standing modes. We review in Appendix B how if
A1 = 0 or A2 = 0, or ϕ̃ = 0 or ϕ̃ = π the system exhibits a standing wave, and how if A1 = A2 and
ϕ̃ = ±π/2 the system exhibits a spinning wave, respectively, in the counterclockwise and clockwise
direction. From an experimental perspective, the amplitudes Am and the phase ϕm are estimated,
respectively, as the modulus and slowly varying phase of the analytic signal of ξm [29–31]:

ξa,m(t ) = Am(t )ei[ωt+ϕm(t )], m = 1, 2. (7)

The analytic signal ξa,m appearing in Eq. (7) can be calculated from ξm as

ξa,m(t ) = ξm(t ) + H[ξm](t )i, m = 1, 2, (8)

where H[ξm](t ) is the Hilbert transform of ξm(t ). For reasons that will appear obvious later, we
underline that the analytic signal ξa,m is calculated along the i-imaginary axis because the Hilbert
transform of the signal is added in Eq. (8) multiplied by the imaginary unit i. The ansatz (5) has
been successfully used in low-order models [8,10,12–14,18], where the system is characterized in
terms of the state space variables {A1, A2, ϕ̃}.

B. Projection on two spinning modes

One defines

2ξ+
a (t ) ≡ ξa,1(t ) + iξa,2(t )

2ξ−
a (t ) ≡ ξa,1(t ) − iξa,2(t ) (9)

One proves by substitution that the pressure field (1) can be expressed as

2p(θ, t ) = ξ+
a (t )e−inθ + ξ−

a (t )einθ + c.c., (10)

where c.c. denotes the complex conjugate of the quantity to its left. We now express ξ±
a in terms of

their slowly varying amplitude A± and phase ϕ±, similarly to (7):

ξ±
a (t ) = A±(t )ei[ωt+ϕ±(t )]. (11)
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FIG. 1. (a) Phase space of the system in terms of the variables {A1, A2, ϕ̃}, employed when a projection
on the two standing modes {cos(nθ ), sin(nθ )} is used. A1 and A2 are the positive amplitudes of the two
standing modes, and the phase difference ϕ̃ between the two modes is periodic over [0, 2π ). The gray surface
describes points at constant amplitude

√
A2

1 + A2
2. It can happen that the system state matches one of the two

standing modes cos(nθ ), sin(nθ ), resulting in A2 = 0 or A1 = 0, respectively. In these cases, the system state
is represented in phase space not by just one point, but by the left and right vertical red lines, respectively,
because for these states the value of the phase difference ϕ̃ is undetermined. This makes the phase space
ill-posed. (b) The same as for (a), but in terms of the variables {A+, A−, ϕ̂}, employed when a projection on
spinning modes is used. The same reasoning as for (a) applies.

By substituting (11) into (10) and dividing both sides by two we obtain

p(θ, t ) = A+

2
eiϕ+

ei(ωt−nθ ) + A−

2
eiϕ−

ei(ωt+nθ ) + c.c.

= A+ cos(ωt − nθ + ϕ+) + A− cos(ωt + nθ + ϕ−), (12)

where we dropped the explicit dependence on time of the variables A+, A−, ϕ+, ϕ−. Similarly to
the case of the two standing modes, one can introduce the phase difference

ϕ̂(t ) ≡ ϕ+(t ) − ϕ−(t ) (13)

describing the synchronization between the two spinning modes.
We observe from (12) that A+ and A− are the amplitudes of two spinning waves rotating,

respectively, in the counterclockwise and clockwise direction, and then that ξ+
a and ξ−

a defined in
Eq. (9) are their respective analytic signals. The amplitudes A+ and A− appear in the definition (3)
of the spin ratio. In particular (9) is the transformation between the orthogonal projections in terms
of standing and spinning modes. The ansatz (10) has been successfully used in low-order models
[32,33], where the system is characterized in terms of the state space variables {A+, A−, ϕ̂}.

C. Shortcomings of using {A1, A2, ϕ̃} as state space variables

Using a projection on two standing modes the state of the system is usually characterized in the
3D phase space of the slowly varying variables {A1, A2, ϕ̃}, as sketched in Fig. 1(a). It can happen
that A1 is zero and the pressure field in Eq. (5) is represented only by the mode with amplitude
A2. In this case the phase ϕ1 is undetermined, and the variable ϕ̃ cannot be interpreted as the phase
between two modes. In a deterministic framework, one can rotate the frame of reference of an angle
such that that the two amplitudes A1 and A2 in the new frame of reference coincide and both modes
are nonzero, as done in Ref. [13].

In a stochastic framework, the orientation of the acoustic field is random, and every choice of
the frame of reference will lead to certain periods of time during which the amplitude of one of
the two modes, say, A1, is close to zero or zero. The amplitude A1 and the phase ϕ1 estimated by
calculating the analytic signal of ξ1 are affected by the level of background noise of the system.
In particular if the amplitude A1 is much larger than the noise level, then the signal ξ1 has a clear
sinusoidal shape on which the noise is added, and the reconstructed amplitude and phase of the
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FIG. 2. Scatter chart for each instant of time of a thermoacoustic azimuthal instability. We plot on the
horizontal axis a monotonic function of the the spin ratio s and on the vertical axis the phase ϕ̃ between two
standing modes we decompose the pressure field, defined in Eq. (6). The color indicates the time. The two
variables ϕ̃ and s are positively correlated, but ϕ̃ cannot be used instead of s or χ to describe the mode nature.
The acronyms acw and cw stand for counterclockwise and clockwise.

instability are representative slowly varying quantities. If, instead, the amplitude A1 is smaller or of
the same order of the noise level the reconstructed phase ϕ1 becomes a fast variable and is strongly
perturbed by the noise (this is not the case for thermoacoustic instabilities of axial type where only
one thermoacoustic mode oscillates, because the coherent oscillating behavior is usually stronger
than the background noise level). This leads conversely to a fast variable ϕ̃ between the two modes.
It follows that the variable ϕ̃ is representative of the state of the system when both amplitudes are far
from zero, but loses meaning and is strongly affected by noise if one of the two amplitudes is close
to zero, as depicted in Fig. 1(a). This is not a feature of the system dynamics but depends instead on
the choice of the state space variables {A1, A2, ϕ̃}, which are the natural choice when employing a
projection on orthogonal standing modes.

We also notice that only if we choose a frame of reference where at a certain instant of time
A1 = A2, we can use the resulting phase difference ϕ̃ to infer the nature of the mode, as discussed
after (6). In particular we present in Fig. 2 the relation between a monotonic function of the spin
ratio s and the phase difference ϕ̃ for one case of an azimuthal instability in an annular combustor.
We observe, for example, how if s = 1 then ϕ̃ = π/2, the system spins counterclockwise and the
nature of the acoustic field is well captured by both variables. However, the variable ϕ̃ is not a
one-to-one mapping of the spin ratio s and then cannot be used as an indicator of the spinning or
standing nature.

D. Shortcomings of using {A+, A−, ϕ̂} as state space variables

Using a projection on two spinning modes the state of the system is usually characterized in the
3D phase space of the slowly varying variables {A+, A−, ϕ̂}, as sketched in Fig. 1(b). Also in this
case it can happen that one of the two amplitudes, say, A+, is zero or close to zero, leading to an
undetermined phase difference ϕ̂ between the two modes. While in the case of standing modes it is
possible in principle to avoid this indeterminacy by rotating the frame of reference, in this case one
can prove that the amplitudes A+ and A− are invariant under a rotation of the frame of reference and
the value of A+ would remain unchanged, not solving the indeterminacy of ϕ̂. Regarding the nature
of the acoustic field, the calculation of the spin ratio s using (3) is not affected by this indeterminacy
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because it depends only on the two amplitudes A+ and A−. However, s is still a derived quantity of
A+ and A− and not a state space variable itself.

This section illustrated how using {A1, A2, ϕ̃} or {A+, A−, ϕ̂} as phase space variables leads in
certain situations to the indeterminacy of the phase between the two orthogonal modes defining
the projection basis. This is not a specific feature of azimuthal instabilities, but a general feature
of the phase difference of two oscillators in 1:1 resonance when the amplitude of one of the two
goes to zero. In the case of azimuthal instabilities, this happens when the system state matches
exactly one of the two modes of the chosen basis (the two orthogonal standing modes or the two
counter-rotating spinning modes respectively). This suggests that the study of azimuthal instabilities
as a synchronization problem between two orthogonal modes is not ideal and prompts the search
for a phase space that is not ill-posed. We have also reviewed how the nature of the acoustic field is
not a state space variable but a derived quantity, harder to calculate in the phase space {A1, A2, ϕ̃}
than in the phase space {A+, A−, ϕ̂}.

Despite these shortcomings, the state space variables {A1, A2, ϕ̃} or {A+, A−, ϕ̂} have been
extensively used in the literature. They can be extracted easily from experimental data and allow
the simple ansatz (5) and (12) for low-order models. In the next section we propose a new ansatz
such that the mode nature is a state space variable and there is a representation of the state of the
system that is well-posed.

IV. AMPLITUDE, NATURE, AND ORIENTATION OF THE ACOUSTIC FIELD

This section shows how azimuthal instabilities can be studied in the context of quaternion
algebra. Quaternion numbers were discovered by Hamilton [34] and comprise three imaginary units
instead of one imaginary unit as in the case of complex numbers. They will be introduced later
where needed. In Sec. IV A we present how quaternion algebra is a viable approach to the problem.
In Sec. IV B we discuss the physical interpretation and draw links to other fields of science where
this type of analysis is standard. We stress that quaternion algebra is a tool with which we discover
the ansatz, but the ansatz is real-valued and holds regardless of quaternion algebra.

A. The analytic signal

We would like to find a way of characterizing the acoustic field that is robust and determined
with respect to a change of the frame of reference and to situations where the acoustic field is in a
pure spinning or standing state. We recognize that the two signals {ξ1(t ), ξ2(t )} are just one of the
many couples of signals observed from a different frame of reference and could then be treated as a
bivariate signal. We define

ξ (t ) ≡ ξ1(t ) + iξ2(t ) (14)

so that we can express the pressure field (1) as

2p(θ, t ) = e−inθ ξ (t ) + c.c. (15)

The variable ξ in Eq. (14) is the complex embedding of the bivariate signal (ξ1, ξ2), as commonly
used, e.g., by Gonella [35] or discussed in the introduction of the book of Schreier and Scharf [36].
It allows us to write the pressure field in terms of one variable only, ξ . We now proceed similarly
to how we treated each of the two modes in the previous subsection. In particular, we would like to
express the slowly varying components of (14) similarly to how it is done in Eqs. (7) and (8), by
means of the Hilbert transform and the concept of analytic signal. We point out next, however, how
this is not trivial.

We observe from (8) that the analytic signals of the two parts of ξ are

ξa,1(t ) = ξ1(t ) + iH[ξ1](t )

ξa,2(t ) = ξ2(t ) + iH[ξ2](t ). (16)
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If we were to define the analytic signal of ξ as ξa ≡ ξa,1 + iξa,2 the two signals would mix together,
i.e., we would obtain

{ξ1(t ) − H[ξ2](t )} + i{H[ξ1](t ) + ξ2(t )}, (17)

which is twice the analytic signal of the spinning mode ξ+
a presented in Eq. (9), and cannot then be

interpreted as the analytic signal of the whole ξ . One is also tempted to define the analytic signal of
ξ as ξ + iH[ξ ], but this option leads to an expression that we cannot make physical sense of.

We propose instead to introduce an additional imaginary unit j . We calculate separately the
analytic signals of the real and imaginary parts of ξ along the j axis:

ξa,1(t ) ≡ ξ1(t ) + jH[ξ1](t )

ξa,2(t ) ≡ ξ2(t ) + jH[ξ2](t ). (18)

Also in this case we can express the analytic signals in terms of slowly varying amplitudes and
phases:

ξa,m(t ) = Am(t )ej [ωt+ϕm(t )], m = 1, 2, (19)

where the expression (19) differs from (7) only because of the choice of the imaginary unit j instead
of i, and we will elucidate how j differs from i later. We define the analytic signal of ξ as

ξa(t ) ≡ ξa,1(t ) + iξa,2(t ) (20a)

= ξ1(t ) + jH[ξ1](t ) + i{ξ2(t ) + jH[ξ2](t )}. (20b)

In a manner that we will show later to be fully equivalent to the definitions (20) and (18), one can
define the analytic signal ξa(t ) as

ξa(t ) ≡ ξ (t ) + H[ξ ](t )j. (21)

The proposed definition (21) of the analytic signal of a complex-valued signal ξ differs from the
real-valued case presented in Eq. (8) just by the choice of a different imaginary unit in the definition.

By introducing the additional imaginary unit j , we have left open to interpretation the meaning of
the presented mathematical expressions until we discuss which algebra we are using. We choose the
associative noncommutative algebra of quaternions. An introduction to quaternion algebra can be
found in the book of Doran and Lasenby [37], but we discuss here all the properties of quaternions
needed in this paper. In quaternion algebra there are three imaginary units {i, j, k} such that i2 =
j 2 = k2 = −1 and that ij = k, jk = i, ki = j . By using the rule ij = k we simplify (20):

ξa(t ) ≡ ξ1(t ) + iξ2(t ) + jH[ξ1](t ) + kH[ξ2](t ). (22)

In a similar manner one obtains (22) from (21). We recover the analytic signal of the first mode in
the real and j -imaginary components of (22) and the analytic signal of the second mode in the i-
and k-imaginary components. The original complex-valued signal ξ is simply

ξ (t ) = Re[ξa(t )] + i Imi[ξa(t )]. (23)

A slightly different definition of the analytic signal ξa(t ) of a complex-valued signal ξ (t ) was
proposed by Le Bihan et al. [38] and named the hypercomplex signal. In later publications [15,16]
the definition (21) was proposed by the same authors, with the name quaternion embedding of the
complex-valued signal ξ . We will instead call ξa the analytic signal of ξ because, in the same way
as the real-valued case, it maps a time series with one fast oscillating component to a time series
where slowly varying quantities are defined, as we discuss next [also because the term “embedding”
usually means something else, as discussed after (14)].

From a practical perspective, we observe that the four real-valued components of the signal ξa in
Eq. (22) can be calculated separately using real-valued algebra. By direct substitution of (19) into
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(20a) we can express ξa(t ) in terms of the slowly varying amplitudes and phases of the two modes:

ξa(t ) = [A1(t )ejϕ1(t ) + iA2(t )ejϕ2(t )]ejωt . (24)

Given a quaternion number a + ib + jc + kd with {a, b, c, d} ∈ R4, its quaternion conjugate is
a − ib − jc − kd. We can express the pressure field p(θ, t ) in Eq. (1) in terms of ξa(t ) and its
quaternion conjugate:

2p(θ, t ) = e−inθ ξa(t ) + q.c. = 2Re[e−inθ ξa(t )], (25)

where q.c. denotes the quaternion conjugate of the quantity to its left. The modulus of a quaternion
number a + ib + jc + kd is simply

√
a2 + b2 + c2 + d2. We can introduce the amplitude A as the

modulus of the analytic signal ξa:

A ≡ |ξa| =
√

ξ 2
1 + H[ξ1]2 + ξ 2

2 + H[ξ2]2 =
√

A2
1 + A2

2 =
√

2(A+)2 + 2(A−)2. (26)

One advantage of ξa in Eq. (22) as compared to the two separate analytic signals ξa,m(t ) for m = 1, 2
presented in Eq. (8) is that the amplitude A does not go to zero when one of A1 or A2 goes to zero
individually, which is one feature of the problem reviewed in Sec. III. It is unclear at this stage,
however, how the expressions (22) and (25) can help to characterize standing and spinning modes,
which is the focus of the next section.

B. Interpretation of the analytic signal

Every nonzero quaternion, and then for our application the quaternion ξa in Eq. (22), can be
expressed as

ξa(t ) = A(t )einθ0(t )e−k χ (t )ej [ωt+ϕ(t )] (27)

with A ∈ (0, ∞), nθ0 ∈ (−π, π ], χ ∈ [−π/4, π/4], ϕ ∈ (−π, π ], and we stress that ϕ does not
have a tilde or a hat to differentiate it from ϕ̃ defined in Eq. (6) and from ϕ̂ defined in Eq. (13). The
structure (27) parametrizes a general quaternion in terms of the amplitude A(t ) of oscillation and
the three angles nθ0(t ), χ (t ), and ωt + ϕ(t ). In our application only the last angle ωt + ϕ(t ) is a fast
varying quantity. The decomposition (27) in a slightly different form was discussed first by Bulow
and Sommer [17]. The calculation of the four variables {A,χ, nθ0, ωt + ϕ} from the quaternion
ξa is detailed in Appendix C. This section discusses the interpretation and physical meaning of the
slowly varying variables A,χ, θ0, and ϕ from different perspectives.

1. The pressure field

By substituting (27) into (25) we obtain

2p(θ, t ) = Aein(−θ+θ0 )e−k χej (ωt+ϕ) + q.c.

= [A cos[n(−θ + θ0)] cos(χ ) cos(ωt + ϕ)

+ ikjA sin[n(θ − θ0)] sin(χ ) sin(ωt + ϕ) + other imaginary terms] + q.c. (28)

= 2A cos[n(θ − θ0)] cos(χ ) cos(ωt + ϕ) + 2A sin[n(θ − θ0)] sin(χ ) sin(ωt + ϕ),

(29)

where in the second passage we exploit the fact that the product of the quaternion imaginary units
is anticommutative, so that ik = −ki = −j and then ikj = −jj = 1. We discuss next the three
angles χ, θ0, ϕ.

The nature angle: If we substitute χ = π/4 in Eq. (29) we obtain

2p(θ, t ) = +
√

2A cos[n(θ − θ0)] cos(ωt + ϕ) +
√

2A sin[n(θ − θ0)] sin(ωt + ϕ) (30)

= +
√

2A cos[ωt + ϕ − n(θ − θ0)]. (31)
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From (31) we observe that for χ = π/4 the system exhibits a spinning wave rotating in the direction
of a growing azimuthal coordinate θ , i.e., in the counterclockwise direction; conversely χ = −π/4
corresponds to a spinning wave rotating in the clockwise direction. If we substitute χ = 0 we
obtain a standing wave, regardless of the values of the other parameters A, θ0, ϕ. We then propose
to call χ the nature angle, because it determines the spinning or standing nature of the acoustic
field. A positive nature angle χ corresponds in the general case to a sum of standing and spinning
modes where the spinning component rotates in the counterclockwise direction, i.e., the pressure
antinodes of such component move at the speed of sound in the positive θ direction. Conversely
χ < 0 corresponds to modes whose spinning component rotates in the clockwise direction. We
prove in Appendix D that the following relation holds between the spin ratio defined in Eq. (3) and
the nature angle:

s = tan χ. (32)

The orientation angle: For χ = 0 the pressure field (29) simplifies to

2p(θ, t ) = + 2A cos[n(θ − θ0)] cos(χ ) cos(ωt + ϕ). (33)

Equation (33) shows that the angle θ0 determines the location of the pressure antinodes of the
resulting standing wave, and we then call it the orientation angle. This angle holds the same
interpretation also for pressure fields partially standing and partially spinning. For example, for
χ ∈ (0, π/4) we introduce � ≡ A cos χ and δ ≡ A sin χ , with � > δ > 0. By substituting these
expressions in Eq. (29) we obtain

p(θ, t ) = +(� − δ) cos[n(θ − θ0)] cos(ωt + ϕ)

+ δ[cos[n(θ − θ0)] cos(ωt + ϕ) + sin[n(θ − θ0)] sin(ωt + ϕ)] (34)

= +(� − δ) cos[n(θ − θ0)] cos(ωt + ϕ) + δ cos[ωt + ϕ − n(θ − θ0)]. (35)

In Eq. (35) the pressure field consists of a standing component (first term) and a spinning component
(second term). In Eq. (35) the azimuthal location with the maximum value of the pressure in the
span of one limit cycle [39] is θ0, which is also the angle of the pressure antinodes of the standing
component.

We observe that the orientation angle nθ0 is a slowly varying variable and cannot be linked with
the azimuthal position of the nodal line calculated in Ref. [27], which is a fast varying variable and
for a pure spinning mode rotates around the annulus at the speed of sound. We prove in Appendix E
that the orientation angle matches the phase ϕ̂/2. It also seems to match, apart for multiplicative
terms, the so-called nondimensional position of the standing wave discussed in Ref. [22].

The phase: Finally, the angle ϕ is the only slowly varying angle in the time coordinate, and hence
we call it simply the slowly varying phase of the system, typical of oscillatory systems studied in
polar coordinates [40,41] and different from the phase difference ϕ̃ and ϕ̂ introduced in Eqs. (6) and
(13).

The physical interpretation of the four variables A, θ0, χ, ϕ presented in this section depends on
the fact that the pressure field p(θ, t ) is e−inθ /2 times the analytic signal ξa(t ) as detailed in Eq. (25).
This specific expression of the pressure p in terms of the analytic signal depends on the application
considered, which in our case is acoustics. In the next two sections we discuss interpretations of the
four variables that are more general and based only on the structure of (27). We also discuss other
applications where the same four variables describe different physics.

2. Ellipse in the complex plane

In this section we discuss the path of the 2D point (ξ1(t ), ξ2(t )) in the (ξ1, ξ2) plane, i.e., the path
of the complex-valued point ξ (t ) introduced in Eq. (23) in the complex plane. By substituting (27)
into (23) we obtain

ξ =Aeinθ0 [cos χ cos(ωt + ϕ) + i sin χ sin(ωt + ϕ) ] (36)
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FIG. 3. The system has two timescales. On the fast timescale of the period of the thermoacoustic oscillation
the point ξ1(t ) + iξ2(t ) rotates in the complex plane around the origin and draws one ellipse for each period.
On the slow timescale the parameters A, χ , and θ0 slowly change the shape of the ellipse. In particular the
nature angle χ determines whether the ellipse collapses to a line (standing state) or to a circle (spinning state),
while the angle θ0 sets the inclination of the ellipse with respect to the axis ξ1 and the orientation of the standing
component of the acoustic field. For χ > 0 the point moves in the counterclockwise direction on the ellipse,
while for χ < 0 it moves clockwise.

Equation (36) matches [42] the definition of the modulated elliptical signal as presented e.g., by
Lilly et al. [43,44]. In particular the expression (36) traces in the complex plane an ellipse, with
major axis of length A cos χ , minor axis of length A sin χ , and angle nθ0 between the major axis
of the ellipse and the real axis, as presented in Fig. 3. The term modulated here characterizes the
fact that while the fast timescale of the phase ωt traces the ellipse, the slow variables A, nθ0, and χ

slowly deform its scale, orientation, and ellipticity.
For χ = ±π/4 the ellipse is a round circle, with the point traveling on the circle, respectively, in

the counterclockwise or clockwise direction. These special circular cases represent spinning waves
in the counterclockwise or clockwise direction, and for them the orientation angle θ0 is meaningless.
For χ = 0 the ellipse collapses to a line, which forms an angle θ0 with the real axis. This special
line cases represent standing waves. We dedicate the rest of this section to show how this ellipse is
common in two other fields of science.

The shape of the ellipse traced in the complex plane dates back at least to the work in
Refs. [35,45] in oceanographic currents analysis, where the flow field is discussed in terms of rotary
currents (clockwise and counterclockwise).

In optics the (x, y) components (Ex,Ey ) of the electric field E of a beam of light traveling in the
z direction draw an ellipse in the (x, y) plane, called the polarization ellipse. One typically works
with the vector proposed by Jones [46], defined as

AJ ≡
[
A1e

iϕ1

A2e
iϕ2

]
(37)

and called the Jones vector, where the subscripts 1 and 2 refer to the x and y directions, respectively.
The x and y components of the electric field are Re[AJ ei(kzz−ωt )] where kz is the wave number in
the z direction and the z component is trivially zero. These two components of AJ appear in the first
factor at the right-hand side of (24). The case of the ellipse matching a perfect circle is referred to as
circular polarized state. The case of a line is referred to as linear polarized state in the nθ0 direction.
All other possible states are classified as elliptically polarized states. The polarization ellipse is fully
determined by A,χ , and nθ0 and does not depend on the frame of reference. In particular A and
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FIG. 4. Sketch of the Poincaré sphere. Points on the equator represent pure standing waves. The north and
south poles represent waves spinning, respectively, in the counterclockwise and clockwise direction. To each
state of the system corresponds only one point in this 3D space.

χ are invariant quantities, and θ0 is a covariant quantity with respect to a rotation of the frame of
reference.

3. Poincaré-Bloch sphere

Poincaré [47] was the first to observe in the study of light polarization that the variables
{A, 2χ, nθ0} span (0,∞) × [−π/2, π/2] × [−π, π ] and can then be interpreted as spherical
coordinates in a 3D space, as presented in Fig. 4. In particular A is the radius of the sphere, 2χ is the
latitude angle, and nθ0 is the longitude angle [48]. Dynamics of the system involving a change of
amplitude occur in the direction of the sphere radius. Dynamics involving a change of mode nature,
from standing to spinning or vice versa, occur in the north-south direction. Dynamics involving a
change of orientation of the part of the acoustic field that is standing occur in the east-west direction.
A system dominantly spinning lingers close to the poles, while a system dominantly standing lingers
close to the equator.

An appealing property of the Poincaré-Bloch sphere representation is that each state of the system
is mapped exactly to one point, and conversely that each point on the sphere corresponds to only
one state of the system. This means that a trajectory of the system as a function of time in the 3D
space of Fig. 4 is robust against noise and does not suffer from the indeterminacy occurring to the
phase variables ϕ̃ and ϕ̂ discussed in Sec. III. We point out that this occurs when using as phase
space the 3D coordinates {S1, S2, S3} of Fig. 4 generated by interpreting {A, 2χ, nθ0} as spherical
coordinates, and not in terms of the coordinates {A, 2χ, nθ0} themselves [49].

We refer the reader to the book by Holm [50, Sec. 4.1] for a related theoretical, geometric view on
the role of the Poincaré sphere on pairs of resonant oscillators. In quantum mechanics the Poincaré
sphere is called the Bloch sphere and is used [51] to study two-state quantum systems [52]. One
example of a two-state system is a particle on a circle, governed by the Schrödinger equation on
a periodic domain, as reviewed, e.g., by Lowe and Peterson [53, Sec. 2-6]. The corresponding
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eigenvalue problem presents degenerate pairs of eigensolutions, in the same way as the wave
equation in a circular domain considered in this paper if rotational symmetry is assumed.

This section has presented how the ellipse parameters and/or the spherical coordinates on the
Poincaré-Bloch sphere describe as functions of time the state of the system. We have made use of
quaternion algebra to recover these quantities, but we point out here that one can calculate the same
quantities without quaternion algebra, as presented, e.g., by Schreier et al. [54] and Lilly et al. [44].
The two approaches are compared by Le Bihan et al. [38, Sec. 6]. Other ways of estimating the
position on the Poincaré-Bloch sphere have been proposed too; see, e.g., Refs. [55,56].

V. REAL-WORLD EXAMPLE

Prompted by one reviewer, we add in this section an application that should clarify the
physical interpretation of the proposed quantities. We consider the azimuthal combustion instability
presented in Ref. [10], before and after the installation of a set of acoustic dampers around the
annulus. These dampers are implemented to widen the gas turbine operation window by reducing
combustor pulsations induced by thermoacoustic phenomena. We discuss in Sec. V A a time domain
analysis of a small observation window. Then we discuss the statistics of a longer observation
window in terms of marginal probability density functions in Sec. V B and in terms of joint
probability density functions in Sec. V C.

A. Time domain

We present in Fig. 5 the time domain evolution of the maximum amplitude of 100 limit cycle
oscillations of the azimuthal instability before the dampers installation. We study them in terms of
standing modes in Fig. 5(a), in terms of spinning modes in Fig. 5(b), and with the new quaternion
projection in Fig. 5(c). In the three subfigures the horizontal time axis is shared, the amplitudes are
measured on the left vertical scale and angles and phases on the right vertical scale. One recognizes,
for example, in Fig. 5(a) at time t ≈ 22T how the fact that the phase φ̃ suddenly jumps value is just
a limitation of the chosen orthogonal projection on standing modes. It happens because one of the
two amplitudes becomes very small, and it does not correspond to any particular physical state of
the system. The same happens in Fig. 5(b) at time t ≈ 9T for the projection on spinning modes,
exemplifying how the two sets of variables {A1, A2, ϕ̃} and {A+, A−, ϕ̂} of these two projections do
not carry physical meaning in all their phase space. The proposed quaternion projection, presented
in Fig. 5(c), characterizes the state of the system in terms of the amplitude A, the nature angle χ ,
and the azimuthal orientation angle nθ0 of the standing component of the pressure field, which are
all physical quantities. At time t ≈ 22T it shows that the system state is close to a standing mode
because 2χ is close to zero, with an orientation angle nθ0 that is increasing. At time t ≈ 9T the
system state nature 2χ changes very quickly, and the azimuthal angle nθ0 undergoes a fast change.
This is, however, physical and not an artifact of the proposed projection. The standing component of
the pressure field has a very small amplitude, and little dynamics can strongly affect its orientation
as observed in this case.

We showed in the previous section that nθ0 and χ , together with the proposed amplitude A, are
not just observables of the system state, but fully describe it, i.e., are valid state space variables.
From an experimental perspective, this means that in order to to characterize the system, we can
look at these variables only. We present steady state statistics in terms of these variables next.

B. Marginal probability density functions

We present on the diagonal of Fig. 6 the marginal probability density functions (PDFs) of each
of the three variables {A, 2χ, nθ0} for an observation time of approximately 19 000 limit cycles. We
characterize the system before the installation of the dampers (red) and after the installation of the
dampers (black). The amplitude A is nondimensionalized in terms of the mean amplitude A before
dampers’ installation.
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FIG. 5. Characterization of 100 acoustic periods of an azimuthal instability, in terms of (a) the amplitudes
A1, A2 (blue and red, left axis) of two standing modes and their phase difference φ̃ (green, right axis); (b) the
amplitudes A+, A− of two counter-rotating spinning(rotating) modes (blue and red, left axis) and their phase
difference φ̂ (green, right axis); (c) the amplitude A of the whole field (black, left axis), the nature angle χ

describing if the field is rotating or standing (blue green, right axis), and the orientation angle nθ0 of the part of
the field that is standing (magenta, right axis). The three representations are mathematically equivalent because
they fully describe the state of the system. Only (c) casts the system state in terms of physically meaningful
variables at all times. The ill-posedness of the phase space in terms of standing modes can be observed for
example at t ≈ 22T where the phase φ̃ abruptly jumps, and similarly in (b) at t ≈ 9T . (a) projection on standing
modes, (b) projection on spinning modes, and (c) proposed projection.

In Fig. 6(a) we observe that the installation of the dampers led to a significant reduction of
the amplitude of oscillation. In Fig. 6(e) we observe that the most likely nature angle 2χ before
dampers’ installation is between 0 and π/4, while after dampers’ installation the peak shifts to 0.
In both cases the pure spinning states, i.e., the values of ±π/2, are not very likely. In Fig. 6(i) we
observe that the orientation angle before the installation of the dampers (red) has a marginal PDF
that is in a first rough approximation flat, with all angles having approximately the same probability.
After the installation of the dampers, the probability of the orientation angle nθ0 of the standing
component, which is also the orientation of the maximum of the acoustic pressure, is close to 0.

C. Joint probability density functions

We present in the off-diagonal subfigures of Fig. 6 the joint PDFs of two variables at a time [57].
Couples of subfigures that are symmetric with respect to the diagonal represent the same quantities
respectively before (subfigures above the diagonal, red shades) and after (subfigures below the
diagonal, gray shades) the installation of the dampers.

In Figs. 6(b) and 6(d) we observe that the probability density function P (2χ,A/A) has a clear
peak and seems to be factorable.

We observe in Figs. 6(c) and 6(g) how at low amplitudes the values of the orientation angle are
equally likely, because the contour lines are approximately flat. This is consistent with the theory,
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FIG. 6. Characterization of approximately 19 000 acoustic periods of an azimuthal combustion instability
in terms of marginal probability density functions (PDFs, subfigures on the diagonal) and joint PDFs (off-
diagonal subfigures). Red shades correspond to time series measured before the installation of the acoustic
dampers, and black shades correspond to time series measured after their installation. The installation of the
dampers leads to (a) a reduction of the amplitude of pulsation A; (e) a shift of the nature angle 2χ towards a
standing state; (i) a preference for an orientation angle around 0 of the standing component.

which predicts that in the linear regime the two modes [58] are decoupled, from which it follows
that the orientation angle is random, with each value being equally likely.

We expect that if the system state is almost completely spinning, the orientation angle nθ0 should
be strongly affected by the background noise and then have an approximately uniform probability
function. This is the case before the installation of the dampers in Fig. 6(f), where we observe that
the contour lines close to 2χ = ±π/2 are approximately flat. This is harder to characterize after the
installation of the dampers, because the system lingers for most of the time closer to a standing state,
and only for a minority of time close to a spinning state where the orientation angle is undetermined.
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Still, we observe in Fig. 6(h) that the conditional PDF P (nθ0|2χ = 2χ
) for a given value of the
angle 2χ
 broadens as 2χ
 departs from 0.

VI. CONCLUSIONS

We show how existing indicators of the nature (standing or spinning) of azimuthal instabilities are
not optimal because they are derived quantities of the acoustic field and cannot be directly used as
state space variables. We show how orthogonal projections offer convenient state space variables but
allow the calculation of the mode nature only indirectly, and these variables determine an ill-posed
phase space. We make use of quaternion algebra, which is equipped with three imaginary units
i, j, k, to find an ansatz that solves these shortcomings. We propose a new ansatz for an azimuthal
acoustic pressure field oscillating at an angular frequency ω in Eqs. (25) and (27), which can be
combined to obtain

2p(θ, t ) = A(t )ein[θ0(t )−θ]e−k χ (t )ej [ωt+ϕ(t )] + q.c., (38)

where q.c. denotes the quaternion conjugate of the term to its left. Equation (38) evaluates to the
real-valued solution (29):

2p(θ, t ) = 2A cos[n(θ − θ0)] cos(χ ) cos(ωt + ϕ) + 2A sin[n(θ − θ0)] sin(χ ) sin(ωt + ϕ).

(39)

We identify in Eqs. (38) and (39) four state space variables that have a direct physical interpretation:
(1) The amplitude A of the acoustic field
(2) The orientation angle nθ0, describing the orientation of the standing component of the

acoustic field; one can characterize the mean azimuthal flow velocity by studying the mean drift
of the orientation angle θ0, if any

(3) The nature angle χ , quantifying how much the system is standing and/or spinning, and in
which direction it spins

(4) The slowly varying phase ϕ of oscillation.
These four state space variables {A,χ, nθ0, ϕ} can be reconstructed from experimental or

numerical time series of the acoustic field and can be used in low-order models, allowing a direct
validation of theoretical results. We provide in Sec. V an experimental example of application
of these concepts on the time series of an acoustic azimuthal instability of an industrial annular
combustor. We find a link between the nature angle χ and the spin ratio s proposed by Bourgouin
et al. [23], and in particular we prove that s = tan χ .

The proposed ansatz allows two geometrical representations of the state of the system: the
polarization ellipse of Fig. 3 and the Poincaré-Bloch sphere of Fig. 4. We review how both
representations are used in other fields of physics that share a similar mathematical structure, e.g.,
light polarization, wind and oceanic 2D currents, and two-state quantum systems. When the system
lingers in the vicinity of a purely spinning state, the angle nθ0 is undetermined, or strongly perturbed
by the noise. A robust way to represent and compare predictions and experimental results is to
characterize the state of the system on the Poincaré sphere, where the indeterminacy of nθ0 does not
propagate.

The new ansatz leads also to a change of perspective: existing theoretical works on azimuthal
instabilities make use of orthogonal projections and study the resulting solutions as synchronization
states between the two oscillatory orthogonal modes. This, however, has the shortcoming that when
one of the two modes has a zero amplitude the synchronization phase is undetermined and loses
physical meaning. With the newly proposed ansatz the nature of the acoustic field is instead the
state space variable χ .

The results apply both to low-frequency azimuthal instabilities typical of annular combustors,
either rotationally symmetric or not, and to high-frequency azimuthal thermoacoustic modes
localized in space and close to eigenfrequency degeneracy. A similar approach may be useful to
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study oscillations in other rotationally symmetric problems, e.g., the wake behind a symmetric bluff
body [59,60].

APPENDIX A: DEPENDENCE OF C(T ) ON THE FRAME OF REFERENCE

We consider for convenience the case n = 1, and split (2) into real and imaginary parts:

C(t ) = 1

N

∑
m

p(θm, t ) cos(θm) + i
1

N

∑
m

p(θm, t ) sin(θm). (A1)

We consider the standard orthogonal decomposition of the pressure field (1), and substitute it into
(A1). We obtain

C(t ) = 1

N

{[∑
m

ξ1 cos2(θm) +
∑
m

ξ1 sin(θm) cos(θm)

]

+ i

[∑
m

ξ2 sin2(θm) +
∑
m

ξ2 sin(θm) cos(θm)

]}
. (A2)

If the pressure sensors are equispaced we have that

1

N

∑
m

cos2(θm) = 1

N

∑
m

sin2(θm) = N

2

1

N

∑
m

sin(θm) cos(θm) = 0, (A3)

and we obtain

C(t ) = 1
2 [ξ1(t ) + iξ2(t )]. (A4)

For a spinning wave for example one has that ξ1(t ) = cos(ωt ) and ξ2(t ) = sin(ωt ), and one obtains

C(t ) = 1
2eiωt (A5)

for the case of equispaced pressure sensors. Indeed, one finds that the indicator has a phase that is
linearly increasing in this case. If, however, the sensors are not equispaced, we now show that the
indicator C is biased. In particular one obtains

1

N

∑
m

ξ1 cos2(θm) = N

2
(1 − δ)

1

N

∑
m

ξ1 sin2(θm) = N

2
(1 + δ) (A6)

1

N

∑
m

ξ1 sin(θm) cos(θm) = N

2
μ.

By substituting (A6) into (A2) one obtains

C(t ) =
(

1 − δ

2
+ μ

2

)
ξ1 + i

(
1 + δ

2
+ μ

2

)
ξ2. (A7)

For a spinning wave one has that ξ1 = cos(ωt ) and ξ2 = sin(ωt ), and we obtain

C(t ) =
(

1 − δ

2
+ μ

2

)
cos(ωt ) + i

(
1 + δ

2
+ μ

2

)
sin(ωt ). (A8)
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This is the parametrization of an ellipse in the (ξ1, ξ2) plane. As a result, the phase of the complex
number C is still linked to the nature of the mode, but the slope depends on the time t in a way that
depends on the frame of reference due to the unevenly spacing of the sensors. This is an unwanted
feature, since the nature of the mode should be independent of the frame of reference. Moreover, the
phase of C depends already on time even in the case of evenly spaced sensors, with an additional
wavy pattern on top of the linear increase (or decrease), as exemplified in Fig. 8, Type 2, in Ref. [21].

APPENDIX B: STANDING AND SPINNING WAVES IN TERMS OF {A1, A2, ϕ̃}
We discuss in Appendix B 1 the case of standing waves and in Appendix B 2 the case of spinning

waves.

1. Standing waves

If A1 = 0 or A2 = 0 by direct substitution in Eq. (5) one observes trivially that the pressure field
is standing.

We then prove that if the phase ϕ̃ defined in Eq. (6) is 0 or π , the system exhibits a standing wave.
We can substitute ϕ2 = ϕ1 + kπ into (5), for k = 0, 1. By substituting also the identity cos(α +
kπ ) = (−1)k cos(α) into (5) we obtain

p(θ, t ) = [A1(t ) cos(nθ ) + (−1)kA2 sin(nθ )] cos[ωt + ϕ1(t )]. (B1)

We can define the auxiliary amplitude A and angle nθ0 as

A ≡ A2
1 + A2

2

nθ0 ≡ Arg[A1 + i(−1)kA2] (B2)

and the inverse transformation

A1 = A cos(nθ0)

(−1)kA2 = A sin(nθ0). (B3)

Substituting (B3) into (B1) we obtain

p(θ, t ) = A(t ) cos[n(θ − θ0)] cos[ωt + ϕ1(t )]. (B4)

We observe from (B4) that at all instants of time the mode shape is fixed to cos[n(θ − θ0)], i.e., the
system exhibits a pure standing mode with a pressure antinode at θ = θ0.

2. Spinning waves

We now prove that if A1 = A2 and ϕ̃ = ±π/2 the system exhibits a spinning wave, rotating,
respectively, in the counterclockwise and clockwise direction. From (6) we can calculate first ϕ2 =
ϕ1 ∓ π/2, and then substitute it into (5), together with A1 = A2 = A:

p(θ, t ) = A(t ) cos[ωt + ϕ1(t )] cos(nθ ) + A(t ) cos[ωt + ϕ1(t ) ∓ π/2] sin(nθ ). (B5)

We now substitute the identity cos(α ∓ π/2) = ± sin(α) into (B5) and obtain

p(θ, t ) = A(t ) cos[ωt + ϕ1(t )] cos(nθ ) + A(t ) sin[ωt + ϕ1(t )] sin(nθ ) (B6)

= A(t ) cos[ωt + ϕ1(t ) ∓ nθ ]. (B7)

We notice from (B7) that the system exhibits a rotating (spinning) wave, respectively, in the
counterclockwise or clockwise direction.
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APPENDIX C: CALCULATION OF A, θ0, χ from ξ

This Appendix discusses how to calculate the slow variables A, nθ0, χ and the fast variable
φ ≡ ωt + ϕ as defined in Eq. (27) and presented again here:

ξa(t ) = A(t )einθ0(t )e−k χ (t )ejφ(t ) (C1)

for a nonzero quaternion ξa.
Step 1. The amplitude A is by definition the modulus of the quaternion ξa, i.e., A ≡ |ξa|. One can

then normalize the quaternion to obtain

ξ�
a ≡ ξa

A
= a + ib + jc + kd. (C2)

The nature angle χ is calculated as

χ = arcsin[2(bc − ad )]

2
. (C3)

Step 2. If χ = ±π/4 one sets

nθ0 = 0

φ� = arctan2[2(bd − ac), a2 − b2 − c2 + d2]/2. (C4a)

If instead χ �= ±π/4 one sets instead

nθ0 = arctan2[2(ab + cd ), a2 − b2 + c2 − d2]/2

φ� = arctan2[2(bd + ac), a2 + b2 − c2 − d2]/2, (C4b)

where φ� is a temporary variable that we need to further manipulate to obtain φ, and arctan2(y, x)
is the argument of the complex number x + iy with codomain (−π , π ].

Step 3. If einθ0−kχ+jφ� = −ξ
�
a :

if φ� � 0 ⇒ set φ = φ� − π

else φ� < 0 ⇒ set φ = φ� + π. (C5a)

If instead einθ0−kχ+jφ� = +ξ
�
a ,

set φ = φ�. (C5b)

The procedure discussed up to this point matches, apart for a typographical error corrected in
Eq. (C4), the one presented by Flamant et al. [15]. It allows the reconstruction of the slow variables
A, nθ0, χ that fully characterize the nature, orientation, and amplitude of the acoustic field, in
the domains A ∈ (0, ∞), nθ0 ∈ (−π/2, π/2], χ ∈ [−π/4, π/4], φ ∈ (−π, π ]. This procedure,
however, has a shortcoming when one applies it not to just to one fixed instant of time, but to a
signal or time series ξa(t ). In particular, as we exemplify next, the reconstructed fast phase φ and
the orientation angle nθ0 are not guaranteed to be continuous functions of the time t if the procedure
above is applied.

We consider the case of nθ0 increasing from a value smaller than π/2, corresponding in Fig. 3 to
an ellipse rotating counterclockwise with the major axis aligning with the vertical axis ξ2. When the
ellipse’s major axis overtakes the vertical axis ξ2 by an angle �θ moving in the counterclockwise
direction, the value of nθ0 is mapped from a positive value to the negative value −π/2 + �θ . This
happens because indeed the angle of the major axis of the ellipse can be described both with the
negative angle −π/2 + �θ and with the positive angle π/2 + �θ . The procedure above chooses
the value of nθ0 such that the domain of nθ0 is smallest and always calculates nθ0 in the range
(−π/2, π/2]. This, however, has the shortcoming that every time the described scenario happens,
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i.e., the major axis of the ellipse crosses the vertical axis ξ2 in Fig. 3, the orientation angle nθ0 and
the fast oscillating phase φ undergo a jump of π . This jump is not physical and compromises typical
time series analyses techniques. To overcome this problem, we choose to reconstruct the orientation
angle nθ as a continuous variable in the range (−π, π ].

In practice this requires to manipulate nθ after step 2 and before step 3, with an additional step
2b:

Step 2b. Let nθ0,m be the value of nθ0 at the discrete instant of time tm. For each time step tm
except the first at m = 0, we consider if |nθ0,m − nθ0,m−1| > π/2. If it is the case we calculate first

nθ
�
0,m = nθ0,m − πsign(nθ0,m − nθ0,m−1) (C6)

and then replace the value of nθ0,m with mod(nθ
�
0,m + π, 2π ) − π , where mod(x, y) is the

remainder of the division of x by y. Once this step is applied sequentially from m = 1 to the last
time step, we proceed to step 3.

APPENDIX D: NATURE ANGLE χ AND SPIN RATIO s

From (9) we calculate ξa,1 and ξa,2 as functions of ξ±
a :

ξa,1 = ξ+
a + ξ−

a

ξa,2 = j (ξ−
a − ξ+

a ). (D1)

We substitute (D1) into (20a) and obtain

ξa = (1 − k)ξ+
a + (1 + k)ξ−

a =
√

2e−kπ/4ξ+
a +

√
2e+kπ/4ξ−

a . (D2)

We express ξ±
a in terms of their slowly varying amplitudes, similarly to (19), and substitute them in

Eq. (D2):

ξa =
√

2e−kπ/4A+ej (ωt+ϕ+ ) +
√

2e+kπ/4A−ej (ωt+ϕ− ). (D3)

We now want to calculate A+ and A− appearing in Eq. (D3) as functions of the nature angle χ in
Eq. (27). In Eq. (27) we set nθ0 = 0:

ξa = Ae−k χej (ωt+ϕ), (D4)

and we dropped the direct dependence on time t in Eq. (D4) for brevity. We can set nθ0 = 0 without
any loss of generality since the amplitudes of the two counter-rotating spinning modes do not depend
on the origin of the azimuthal frame of reference. By equating (D4) and (D3) we find

A+ = A
cos χ + sin χ√

2
, (D5a)

A− = A
cos χ − sin χ√

2
. (D5b)

Finally substituting (D5) into the definition (3) of s we recover (32).

APPENDIX E: ORIENTATION ANGLE nθ0 AND PHASE φ̂

In this Appendix we prove that nθ0 matches φ̂/2. We write a solution in terms of spinning modes
from (12) as

p(θ, t ) = A+

2
eiϕ+

ei(ωt−nθ ) + A−

2
eiϕ−

ei(ωt+nθ ) + c.c. (E1)
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We now assume A+ � A− (with the other case following similarly), with

A+ = A− + �A, with �A � 0. (E2)

We substitute (E2) into (E1) and obtain

p(θ, t ) = A−

2
(ei(ϕ+−nθ ) + ei(ϕ−+nθ ) )eiωt + �A

2
ei(ϕ+−nθ+ωt ) + c.c. (E3)

We now recast the two phases in terms of their difference and their sum

ϕ+ = (ω� − ω)t + ϕ̂/2

ϕ− = (ω� − ω)t − ϕ̂/2, (E4)

where

ω� ≡ ω + ϕ+ + ϕ−

2t
(E5)

perturbs the frequency of oscillation ω. We substitute (E4) into (E3) and obtain

p(θ, t ) = A−

2
(ei(ϕ̂/2−nθ ) + e−i(ϕ̂/2−nθ ) )eiω�t + �A

2
ei(ϕ̂/2−nθ+ω�t ) + c.c. (E6)

= A− cos(ϕ̂/2 − nθ )eiω�t + �A

2
ei(ϕ̂/2−nθ+ω�t ) + c.c.

= 2A− cos

(
nθ − ϕ̂

2

)
cos(ω�t ) + �A cos

(
ϕ̂

2
− nθ + ω�t

)
. (E7)

The first and second terms in Eq. (E7) are respectively the standing and the spinning components
of the pressure field, as in Eq. (35). By direct comparison with (35), we find that φ̂/2 matches the
orientation angle nθ0.
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