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ABSTRACT
Can-annular combustors consist of a set of independent

cans, connected on the upstream side to the combustor plenum,
and on the downstream side to the turbine inlet, where a transi-
tion duct links the round geometry of each can with the annular
segment of the turbine inlet. Each transition duct is open on the
sides towards the adjacent transition ducts, so that neighbouring
cans are acoustically connected through a so called cross-talk
open area. This theoretical, numerical and experimental work
discusses the effect that this communication has on the ther-
moacoustic frequencies of the combustor. We show how this
communication gives rise to axial and azimuthal modes, and
that these correspond to particularly synchronised states of ax-
ial thermoacoustic oscillations in each individual can. We show
that these combustors typically show clusters of thermoacoustic
modes with very close frequencies and that a slight loss of ro-
tational symmetry, e.g. a different acoustic response of certain
cans, can lead to mode localization. We corroborate the predic-
tions of azimuthal modes, clusters of eigenmodes and mode lo-
calization with experimental evidence.

INTRODUCTION
Can-annular combustors are common in heavy-duty land

based gas turbines. In this design, the air flows from the compres-
sor outlet to the combustor plenum. From there, the air stream
splits into N cans. Each can consists to a first approximation of
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a cylinder that is connected upstream to the plenum and of one
or more fuel injector(s) and respective combustion zone(s) [1].
After the last combustion zone the hot gas flows into the turbine
inlet. Since the can cross section is circular and the inlet of the
turbine is an annular gap, a special transition duct is designed to
suitably link the two, as sketched in Fig. 1.

High frequency thermoacoustic instabilities are localized in
the regions close to the flame. As such, they are not specific of
annular or can-annular types of combustors. We focus instead
on low frequency thermoacoustic instabilities, i.e. on frequen-
cies below the cut-on frequency of transversal modes in each
can. While thermoacoustic modes in annular combustors have
received ample attention over the last decade [2,3,4,5], the same
is not true for can-annular systems. Krebs et al. [6] show that
low frequency acoustic modes are axial in each can, but particu-
lar attention is required when one considers the acoustics in the
N transition ducts, both because of their complex geometry and
because of the acoustic communication occurring between adja-
cent transition ducts. Land based can-annular gas turbines have
an even number N of cans because of the common design of
the combustor casing, which comprises of an upper and a lower
part with a horizontal flange inbetween. An odd number of cans
would require fixing a can at the flange location. We then con-
sider in the following the case of N even, but the methods and
the results are rather similar for the case of N odd, which is more
common in aero-derivative engines [7]. Kaufmann et al. [8] dis-
cuss how thermoacoustic mode shapes differ between a single-
can test rig and a model of a quarter of an engine comprising
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(a) 3D sketch of a transition duct (b) Front view of the air volume (c) Side view of the air volume

FIGURE 1: Geometry of a typical transition duct and the simplifications leading to the 2D model, appearing ultimately in Fig. 2a. The
communicating gap between two adjacent transition ducts is colored in gray, with an axial length Lgap.

of four cans. More recently Farisco, Panek et al. have stud-
ied the acoustic cross-talk communication between neighbour-
ing cans [9, 10, 11, 12]. We show in this manuscript that the low
frequency modes have certain peculiar features in can-annular
combustors that are related to this cross-talk communication.

The last section of the manuscript discusses the effect of
asymmetries in can-annular combustors. This has been inves-
tigated for annular combustors by various groups (for exam-
ple [13, 2, 4, 14, 15, 16]); however, to our knowledge, these as-
pects have not been addressed yet for can-annular configurations.
Although both types of systems feature the same nominal sym-
metry – a discrete rotational symmetry – a qualitatively different
response to asymmetries can be expected. This is associated with
the relatively weak coupling between the individual cans. In the
present work, we will study asymmetry effects based on an ele-
mentary network model for a can-annular system, with a realistic
transfer matrix for the can-to-can coupling at the turbine inlet.

THE ROTATIONALLY SYMMETRIC CASE
In this section we assume that all cans are the same, i.e. that

the system has rotational and reflection symmetry. Typically the
geometry of the cans is the same for all the cans, and the pref-
erential clockwise or anticlockwise direction of the mean flow
as it enters the turbine stator plays a role in a part of the acous-
tic domain that is acoustically compact in comparison with the
wavelength of interest. We will discuss later the effect of the loss
of this rotational symmetry.

Because of the rotational symmetry, according to Bloch the-
ory [17,18] the solutions in the frequency domain of the acoustic
pressure field p̂ in the N cans can be written in the form:

p̂(xxx) = ψ(xxx)eimθ , m =−N/2+1, . . . ,0,1, . . . ,N/2 (1)

where θ is the azimuthal coordinate around the axis of discrete
rotational symmetry, the turbine rotor, and ψ(xxx) is periodic in θ

with period 2π/N (i.e., ψ is identical in all cans). The n-th can
is centered at the azimuthal position

θn = (n−1)
2π

N
(2)

in a frame of reference where the first can is at the origin. In
(1) the integer m is called the Bloch wavenumber, and in our
application it is the azimuthal order of the solution, because in
time domain the solution p(xxx, t) = p̂(xxx)eiωt = ψ(xxx)ei(ωt+mθ) is
a spinning1 wave in the azimuthal coordinate θ . For example
m=±2 denote two counter-rotating spinning waves of azimuthal
order 2. All these modes appear in counter-rotating, degenerate
pairs, except for the mode m = N/2 and m = 0 that are non-
degenerate and are considered next.

In particular for m = 0 we obtain an axial mode, while for
m = N/2 we observe from (1) that the solution in the n-th can is:

p̂n(xxx) = ψ(xxx)ei N
2 (n−1) 2π

N = ψ(xxx)ei(n−1)π = (−1)n−1
ψ(xxx) (3)

From (3) it follows that the solution for m = N/2 changes sign
from one can to the next, i.e. the acoustic field of one can is in
anti-phase with respect to the acoustic field of its two neighbour-
ing cans. For this reason, the mode m = N/2 is called a push-pull
mode, in analogy with the change of sign.

One can look for solutions for a fixed value of m by studying
the solution ψ in (1) in one can only, by applying Bloch bound-
ary conditions at the interface between two neighbouring cans,
i.e. at the two side zones with length Lgap in Fig. 1a,c. This is
discussed in the next section. From the study of one can for all
possible values of m one can calculate the response of all the cans
accounting for all azimuthal modes.

1i.e. travelling in the azimuthal direction at the speed of sound
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Transition ducts’ modelling The Mach number is low in the
transition duct main cross section, typically below 0.2. We then
neglect low-Mach number effects in the volume and assume a
zero mean flow in the wave equation. From upstream to down-
stream, the cross-section of a transition duct goes from circular
to approximately rectangular, as sketched in Fig. 1a. In particu-
lar it broadens on the sides and it thins in the orthogonal direc-
tion as presented in Fig. 1b,c. This leads to an overall modest
change of the cross section area. Moreover, the axial progres-
sion of this area change is particularly smooth because it is de-
signed to avoid flow separation. One can then study the effect
of the slowly varying cross section on the acoustics [19, 20, 21].
Because this change of the cross section is modest and depends
strongly on the specific combustor, it is neglected in the follow-
ing. We also neglect the curvature upstream of the turbine inlet
presented with a green line in Fig. 1c, and neglect also the slight
turn in the azimuthal direction, as presented with the red line in
Fig. 1b. This leads to the bidimensional, rectangular domain of
Fig. 2a. The small effect of these geometrical approximations
will be validated later by comparing the results obtained on the
exact 3D geometry of a set of N = 12 real transition ducts and on
their 2D equivalent counterpart.

We focus instead on the cross-talk area where acoustic com-
munication between transition ducts occurs, coloured in gray in
Fig. 1, with an axial length Lgap.

We choose two nondimensional numbers describing the ge-
ometry. The first is the aspect ratio L/H of the 2D domain in
Fig. 2a. The second is the ratio Lgap/H, which can be interpreted
as the strength of the can-to-can comunication. The reference
values for the two numbers are presented in Table 1. When we
later investigate the effect of one nondimensional number, we
keep the other constant.

TABLE 1: Typical proportions of the transition duct of Fig. 2a

nondimensional number reference value

Lgap/H 0.2

L/H 2

The Helmholtz number of the stator Hes = Lsω/c is typi-
cally low for axial modes in heavy-duty gas turbines at the tur-
bine inlet, where ω is the acoustic angular frequency of inter-
est and c is the speed of sound. This means that the first sta-
tor length Ls can be assumed as acoustically compact as com-
pared to the acoustic wavelength 2πc/ω of interest. Moreover
the Mach number is high at the turbine inlet so that we can model
the acoustic response of the turbine inlet with a reflection coeffi-

cient with a fixed gain < 1 and a zero phase response2 [23]. Since
the focus is not on the turbine inlet reflection, we fix a reflection
coefficient gain equal to unity, i.e. apply homogeneous Neumann
boundary conditions for the pressure field on the downstream end
of the domain in Fig. 2a, and expect only a small quantitative
effect when accounting for a gain lower than 1, as found for ex-
ample by [24]. We also neglect from the study the occurrence
of entropy wave generation from the flame and their reflection at
the turbine inlet [25, and references therein], assuming it plays
a negligible role. The discussed modelling simplifications lead
to the bidimensional domain of the transition duct presented in
Fig. 2a. On the black and red contour we apply homogeneous
Neumann boundary conditions and on the blue contour Bloch
boundary conditions:

ψ(x,H/2) = ψ(x,−H/2)ei 2π
N m x ∈ [L−Lgap,L] (4)

where m is the azimuthal wavenumber, and the domain spans a
distance H in the vertical direction in Fig. 2a. The Helmholtz
equation is solved by discretizing the 2D domain on Chebyshev
nodes, and expressing the solution as a truncated Chebyshev se-
ries [26]. This spectral solution allows a very quick numerical
calculation of the eigensolutions, and in turn very quick sensitiv-
ity studies on the governing parameters. The spectral solver has
been verified against a commercial finite element method solver.

Modes’ shapes and cans’ synchronization In this section we
fix a number N = 14 of cans, present the theoretical results and
validate them with engine data. We discuss the axial mode
m = 0, the push-pull mode m = N/2 = 7, and the second az-
imuthal mode m = 2, in this order. The considerations that ap-
ply to the case m = 2 apply also to the other degenerate modes
m = 1,3, . . . ,6 that are then not discussed in the following.

We present in Fig. 2c,d the first non-trivial axial3 mode,
eigensolution of the problem for m = 0. We observe that the
wavelength λ and the mode shape match the half-wavelength
acoustic mode of the duct, which is the solution of the prob-
lem with homogeneous Neumann boundary conditions on the
whole boundary, i.e. for Lgap = 0. We present in Fig. 2e,f the
first push-pull mode. This mode has a pressure anti-node at the
upstream end of the transition duct in Fig. 2e, and a quite clear
pressure node at the transition duct outlet on the right of the do-
main, so that it resembles a quarter-wave mode of the whole 2D
duct. However the acoustic velocity of this mode, presented in
Fig. 2f, has a strong peak around the location where the gap be-
tween cans starts. The acoustic velocity profile is a decreasing

2one can account for finite Helmholtz number effects by extending the axial
domain by an equivalent end length correction [22], affecting only slightly the
results

3for the axial case only there is also a trivial solution: a mode that is constant
in the whole domain, at 0 Hz
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(a) Geometry of the transition duct model (b) Colormaps for c,d,e,f)

(c) First axial mode, pressure field. λ = 2L (d) First axial mode, acoustic velocity field. λ = 2L

(e) First push-pull mode, pressure field. λ = 4.26L (f) First push-pull mode, acoustic velocity field. λ = 4.26L

FIGURE 2: (a) geometry of the 2D model of the transition duct, simplified from the original geometry of Fig. 1. (b) legend, common to
the other four figures. c) and d): first non-trivial eigenmode of the studied geometry for an axial mode, i.e. m = 0. Absolute value of the
acoustic pressure on the left, and absolute value of the acoustic velocity on the right. The solutions of the axial case match the solutions
of the problem with Neumann conditions applied over the whole boundary. e) and f): same of c) and d) but for a push-pull mode,
i.e. m = N/2 = 7, for a set of N = 14 cans. In f) the acoustic velocity has a strong increase where the gap starts and is inhomogeneous
over the gap length.

function of the axial coordinate along the gap length, suggest-
ing that low order models should account for this strong gradient
and cannot assume that the component of the acoustic velocity
normal to the gap is constant along the gap.

For the axial mode, one easily observes by substituting
m = 0 into (1) that the solution is the same in all the cans, and in
particular the phase of the mode is the same in the whole com-
bustor, so that all cans oscillate in phase. For a push-pull mode,
we have already discussed after (3) how adjacent cans should be
in opposition of phase.

After analyzing the axial (m = 0) and push-pull (m = N/2)
modes, we now discuss the general azimuthal degenerate case
m = 1, . . . ,N/2−14, which is harder to interpret because it gives

4the respective negative cases m =−N/2+1, . . . ,−1 are identical because of

rise to complex-valued solutions. This is expected mathemati-
cally because the term on the right hand side of the boundary
condition (4) is complex-valued, and physically because a spin-
ning mode rotates in the annulus just before the turbine inlet with
a varying phase in the azimuthal direction, and such phase is
the argument of the eigenmode. We plot the first eigenmode for
m = 2 in Fig. 3b, where the colored filling represents the phase
and the gray lines represent the absolute value. By exploiting
(1) for m = 2 we reconstruct from the solution of a single can of
Fig. 3b the solution in all the N = 14 cans, presented in Fig. 3c.
The phase is approximately constant within each can, and de-
scribes how all the cans oscillate with the synchronization/phase
pattern described by the azimuthal order m.

the reflection symmetry
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(a) Legend for b) and c) (b) First azimuthal m = 2 mode in one can, pressure field. Legend in a)

(c) Phase in the 14 cans of the same mode of a). The first can from the left is the same appearing in b)

FIGURE 3: First eigenmode with azimuthal order m = 2, for a set of N = 14 communicating cans. Because the solution is complex-
valued, we use different colormaps for the absolute value and the phase angle, presented in the two legends in a). In b) we present the
solution in one can only: we observe that the phase is approximately constant on the cross section at the upstream end of the transition
duct, on the left, far from the cross-talk area. The amplitude decreases slightly from left to right. In c) we present the ensemble of all
the 14 cans pulsating together for the mode in b), reconstructed using (1). The phase changes mostly at the cross-talk area, and changes
2 times (since the azimuthal order m is 2) the quantity 2π along the annulus. At the upstream end of each transition duct the phase is
approximately constant and the mode presents a certain azimuthal phase pattern. The phase between two cans is the difference of the
phase value between two locations. Refer to Fig. 4a for experimental evidence of a second order azimuthal mode like this one in an
engine.

We conclude this paragraph by presenting in Fig. 4 evidence
of a second order azimuthal mode and of a push-pull mode based
on engine data. Following the same methodology of [27] we
present in Fig. 4a the the phase pattern between pressure sensors
located at different azimuthal locations, i.e. different cans. The
pattern matches the predicted phase pattern presented in Fig. 3c
for a second azimuthal mode. Figure 4b presents a pulsation
pattern where adjacent cans oscillate out of phase, compatible
with a push-pull mode. Similar experimental evidence based on
two cans only is presented by [12] in their Fig. 1. However in
Fig. 4b some adjacent cans are not exactly out of phase, and we
observe some variation of the amplitude of the mode as function
of the can number. We will reconsider these two features later.

Equivalent reflection coefficient We now turn our attention to
the reflection coefficient R = g/ f observed from the inlet of the
transition duct, sketched with the red line in Fig. 2a. In partic-
ular, we discuss how a certain mode, either axial, azimuthal or
push-pull, travelling downstream in one can with amplitude f , is
reflected back with amplitude g from the ensemble of the other
transition ducts. This can be calculated with a Green function
approach on the problem, by expanding the Green function as a
truncated Galerkin series [28, §7.3]. This is a consolidated tech-

nique that requires the calculation of all the eigenmodes in the
frequency range of interest [29]. One obtains the impedance Z̃m:

pm = Z̃mum (5)

Z̃m relates the pressure and the acoustic velocity at the inlet of one
transition duct, assuming all other ducts respond at the azimuthal
wavenumber m. The gain of the reflection coefficient Rm =(Zm−
1)/(Zm +1) is trivially one at all frequencies because we do not
consider any acoustic losses. The phase of R for the different
modes is presented in Fig. 5, for the nondimensional values fixed
in Table 1. We present the results as function of the Helmholtz
number He, defined as

He =
Lω

c
(6)

When interpreting the results, it is useful to observe that He = π

corresponds to the frequency of the first non-trivial axial mode5

of Fig. 2c.
We observe that in the zero frequency limit the ensem-

ble of transition ducts behaves like a wall for the axial mode

5because that mode has a wavelength λ = 2L, see Fig. 2c
5 Copyright c© 2018 by ASME
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(a) second azimuthal mode m = 2
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(b) push-pull mode m = N/2 = 7

FIGURE 4: Experimental evidence of a second azimuthal and of a push-pull mode. The timeseries of 14 pressure sensors in a 14-can
can-annular combustor are processed at the frequency of one thermoacoustic instability. We present the amplitude of pulsation at that
frequency on the left axis (in arbitrary units) and the phase difference on the right vertical axis at this frequency in each can. The phase
difference is between the first can and the n-th can, so that the value is zero in the first can. a) and b) refer to a different frequency of
oscillation and a different operating condition. a) the phase pattern corresponds to an azimuthal mode of order m = 2 that is rotating,
because the phase changes with an approximately constant slope twice the amount of 2π moving along the annulus. This matches the
theoretical prediction of Fig. 3c. b) The phase difference between most adjacent cans is very close to ±π . We observe some variation of
the amplitude between cans, characterized as mode localization in the last section of the manuscript

FIGURE 5: Phase of the equivalent reflection coefficient for
the azimuthal modes for N = 14 cans, calculated with reference
cross-section at the red inlet of the transition duct of Fig. 2a. The
Helmholtz number is defined as He = Lω/c.

(R = 1), while it behaves as an open end for all azimuthal modes
(R = −1). This is explained mathematically by the fact that the
Galerkin series of the axial mode has a Helmholtz mode at ω = 0,
while all others do not. Modes with a high azimuthal wavenum-
ber, e.g. m ∈ {5,6,7}, have a very similar phase response. In the
linear regime the solution is a superposition of these eigenmodes,
which are linearly independent and orthogonal. This means that
if there is an eigenmode at m = 6, very likely there exist also
eigenmodes at m = 5,7 with a very close frequency of oscilla-

tion. We call a set of modes with close frequencies a cluster,
which we will further substantiate later.

We present in Fig. 6 a comparison between the results ob-
tained with a finite element solver on a complex 3D geometry of
12 connected transition ducts neglecting mean flow and results
obtained with the 2D model presented in this manuscript. The
good agreement confirms that the ignored geometrical features
play a minor role and further validates the 2D model.

Eigenfrequencies In Fig. 7 we study the sensitivity of the
eigenfrequencies of the system with respect to the aspect ratio
L/H. We study the Helmholtz number He = ωL/c of the eigen-
modes, with the number defined so that the half-wave mode pre-
sented in Fig. 2c,d has a Helmholtz number equal to π . We ob-
serve that as the aspect ratio L/H increases the frequencies of the
azimuthal modes slowly get closer to the frequency of the push-
pull mode, to one of the two horizontal asymptotes at He = π/2
and He = 3π/2.

One can also make use of Fig. 7 to discuss the eigenfre-
quencies of a whole can-annular combustor. In fact, a combus-
tor where all cans do not comunicate on the upstream end at the
plenum, or such that this comunication at the plenum plays a neg-
ligible role, can be modelled with a set of non-communicating
cylinders connected on the upstream end to the transition ducts.
This is simply an increase of the length L of the computation
domain of Fig. 2a. For example the eigenfrequencies of a can
combustor with a can equivalent6 total length that is thrice the
transition duct length can be read in Fig. 7 by setting the aspect
ratio L/H to 6. We observe that the eigenfrequencies of the high

6the upstream part of the can is often colder, so that the equivalent length at
the temperature of the transition duct is longer than the actual geometrical length
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FIGURE 6: Validation of the geometrical simplifications for the
2D model for N = 12. The dashed lines are obtained from a
fixed complex 3D geometry, while the continuous lines are ob-
tained with the bidimensional model proposed in this manuscript,
with the nondimensional values estimated from the 3D geometry
without applying further corrections. The good agreement vali-
dates the geometrical approximations made to map the complex
3D geometry to the simpler 2D model.

azimuthal wavenumbers m∈ {5,6,7} are all very close and form
a cluster. One can then expect that this cluster may occur together
in experimental measurements, if one considers the system in a
linear framework, and subject to stochastic noise and weak non-
linear saturation.

To experimentally validate this, from the pressure value p(n)

at a fixed axial location in the n-th can, upstream of the transition
duct, we introduce the amplitude pm of the m-th azimuthal mode
with the discrete Fourier transform:

pm =
1
N

N

∑
n=1

p(n)e−imθn (7)

In (7) m = −N/2 + 1, . . . ,0,1, . . . ,N/2 is the azimuthal
wavenumber, and the angle θn is defined in (2). We present in
Fig. 8 the spectrogram of the azimuthal modes of an engine.
One then observes the experimental evidence of the clusters just
predicted, where the system selects certain azimuthal modes in
which it expresses larger acoustic amplitudes based on factors
like the flame response at the different modes’ frequencies, and
the loss of rotational symmetry of the system, as discussed in the
next section.

Based on this evidence on thermoacoustic clusters, we look
again at the phase pattern for the push-pull mode presented in
Fig. 4b. Because close to the push-pull mode frequency there are
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FIGURE 7: Sensitivity of the first two eigenfrequencies of a can
system as function of the geometry aspect ratio L/H, for all az-
imuthal wavenumber m, for N = 14. We plot the Helmholtz num-
ber of all the eigenmodes with He < 2π for each azimuthal mode
m, as function of the two nondimensional parameters govern-
ing can to can acoustic communication. As L/H increases, the
Helmholtz number of the azimuthal modes converge slowly to
π/2 and 3π/2 for the first two modes. For a fixed value of L/H,
the eigenfrequencies for m = 5,6,7 are rather close, forming a
cluster. These modes are closer together the larger is L/H.

other modes of high azimuthal order that may also be excited,
the phase pattern of Fig. 4b for m = 7 is not as clean as if only
one mode is excited, as in Fig. 4a. The non-uniform amplitude
pattern will be discussed later.

Transmission between cans In the previous section we have
calculated the response of the set of N transition ducts to the
m-th azimuthal mode. This has allowed to understand experi-
mental data, both in terms of frequencies and phase pattern, on
a system level. With the same information one can also discuss
the acoustic response in terms of individual cans. In particu-
lar one considers the ensemble of N communicating transition
ducts, with N ports at the outlet of the N cans, i.e. at the inlet of
the transition ducts. The communication between these N ports
can be written as a many-to-many impedance between the pres-
sures ppp≡ [p(1), . . . , p(N)] and the velocities uuu≡ [u(1), . . . ,u(N)] at
the inlet of each transition duct:

p(n)

ρc
=

N/2

∑
m=−N/2+1

pm

ρc
eimθn =

N/2

∑
m=−N/2+1

Z̃mumeimθn (8)

where (5) has been substituted in the second passage in (8). In
(8) ρ is the mean density of the gas and we use superscript within

7 Copyright c© 2018 by ASME



0.0 0.5 1.0

FIGURE 8: Spectrogram of the timeseries of the azimuthal modes reconstructed from an engine. We can observe that more than one
azimuthal mode is active in a small range of frequencies, forming a cluster. Within the cluster, each mode peaks at a frequency that
increases with the azim. order m. The highest amplitude is not always in the same mode, and the system’s energy appears to move
randomly between the modes, with some statistical preference for the m = 3,4,5 modes.

round parentheses to refer to quantities calculated in can space.
One then writes the acoustic velocities of the azimuthal modes
um in terms of the velocities in the cans:

p(n)

ρc
=

N/2

∑
m=−N/2+1

Z̃m

(
1
N

N

∑
q=1

u(q)e−imθq

)
eimθn (9)

=
N

∑
q=1

(
1
N

N/2

∑
m=−N/2+1

Z̃meim(θn−θq)

)
︸ ︷︷ ︸

Z(nq)

u(q) =
N

∑
q=1

Z(nq)u(q) (10)

Instead of characterizing the response in terms of p(n) and u(n),
we can look at the problem in terms of the Riemann invariants
f (n) and g(n) axial in each can, with f and g as sketched in Fig. 2a.
They are related as ggg(ω) = TTT (ω) fff (ω), where T (nq) are calcu-
lated from Z(nq). The operator T (nq) expresses the transmission
of the downstream travelling wave f (q) leaving the q-th can, and
being converted into an upstream travelling wave g(n) entering
the n-th can. For n = q we have that T (nn) expresses the reflec-
tion of f (n) back upstream to the same can. Both ZZZ(ω) and TTT (ω)
are circulant matrices at a fixed frequency ω , and hold a series
of elegant mathematical properties [30]. Physically, this happens
because of the rotational symmetry of the system, so that for ex-
ample T (3,8)(ω) is identical to T (4,9)(ω) because the system is
invariant to a rotation of the azimuthal frame of reference of one
can. It follows that the transmission matrix TTT (ω) is fully defined
by a single row or column, so we introduce

T (d) = T (1,d+1) d = 0,1, . . . ,N/2 (11)

which is the transmission of a wave f travelling downstream one
can to a can that is d cans apart. In particular for d = 0 we
have that T (0) f is the reflected wave in the same can, T (1) f the
transmitted wave in each of the two adjacent cans, and so on as
sketched in Fig. 9a. Because of the mirror symmetry, we also
have that T (k) = T (N−k), so that only N/2+ 1 elements of T (d)

need to be defined. It is then sufficient to characterize the transfer
functions from one can to itself and to the first N/2 cans in either
clockwise or anti-clockwise direction to fully describe T .

We present in Fig. 9b,c the transfer functions T (d) for d =
0,1, . . . ,N/2. We observe how the transmission is stronger to
cans that are close to the originating can. Moreover, in the zero
Helmholtz number limit the gain of T (0) goes to 1−2/N, while
the gain of all other T ( j) j 6= 0 goes to 2/N.

We observe that the reflection of a wave to the same can has
a phase response of π at the origin, i.e. the turbine inlet behaves
as an open duct if all other cans do not respond. This is not the
case in practice, and one should not draw conclusions on the sys-
tem’s dynamics based on the results of Fig. 9, because the syn-
chronization and interaction between the cans is not accounted
for. One can instead discuss the reflection of a wave back to the
same can for all possible synchronized states of the other pulsat-
ing cans, as presented already in Fig. 5. One can then argue that
the nonlinear, stochastic response of all other cans will lie some-
where inbetween all the responses of these possible synchronized
states, in a statistical sense.

THE EFFECT OF ASYMMETRY
In this section, we will introduce and study a simplified can-

annular system in terms of a network model. Based on this model
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(a) Sketch of the transmission tranfer functions
T (d) between one can and all the other cans
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(b) Gain of the transfer functions of the transmis-
sions of a wave travelling from one can to the same
can and the others
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(c) Phase of the transfer functions of the trans-
missions of a wave travelling from one can to the
same can and the others

FIGURE 9: a) Sketch of the reflection/transmission transfer functions T (d) for an in-coming travelling wave f . Each function T (d)(ω)
is the transmitted Riemann invariant from one can to a can that is d cans apart. For example T (0) is the reflection of a wave propagating
downstream of one can and being reflected to the same can, and T (3) can be interpreted for example as the transmission of a wave
travelling downstream can 4 and propagating upstream in can 7, or any other two cans that are 3 cans apart. b,c) Gain and phase of the
transfer functions T (d) between all cans.

system, we will perform a modal analysis without and with flame
response to illustrate the general eigenstructure of this type of
system. We will furthermore assess the effect of asymmetry,
originating from different flame responses in the cans, as this
may occur in an engine, on purpose or not.

Modal and stability analyses including the effect of asym-
metry have been conducted for annular combustors in various
studies (for example, Refs. [31, 32, 33]); however, it can be ex-
pected that a can-annular system exhibits qualitatively different
eigenstructure and response to asymmetries. This is because a
can-annular system can be interpreted as a system of weakly
coupled, nominally identical oscillators, from which it inherits
certain dynamical features. For an annular system, this interpre-
tation is not appropriate. The aspect that applies to both annular
and can-annular systems is the discrete rotational symmetry, at
least nominally. Since both types of systems feature the same
symmetry group, eigenvalue degeneracy and associated splits un-
der asymmetric perturbations are identical. However, as pointed
out in the previous section and is further elaborated on below,
the eigenfrequencies for can-annular systems come in clusters
(associated with a certain axial mode order in the cans), which
is a result of the weak coupling and cannot be found in annular
systems. As is well known in general modal theory [34], systems
with eigenvalue clusters (i.e., eigenvalues that are close) feature
high eigenfunction sensitivity towards perturbations. Therefore,
a can-annular system that is only slightly asymmetrically per-
turbed may exhibit significant changes in the oscillation pattern,
vastly different from the mode structures in the symmetric case.

We will illustrate these effects on the basis of a model system in-
troduced next. To account for the can-to-can coupling in a realis-
tic fashion, we use the impedance/reflection coefficient matrix of
the transition duct arrangement discussed in the previous section.

The cans are modeled in a simplified manner through, start-
ing from the upstream end, as sketched in Fig. 10:

1. a pressure-node impedance, representing the large volume
of the plenum, imposing a pressure-release condition

2. an L–ζ model [35], representing the burner
3. a flame transfer function
4. a duct, accounting for the acoustic propagation from the

flame to the transition duct

For the L–ζ model, we choose an effective length of 10% of the
transition duct length, which is a realistic value for swirl gen-
erators; the damping coefficient ζ is set to zero here, as we do
not attempt any quantitative comparison with experimental data.
The can length is set equal to the transition duct length, for a total
length of 2L. The ratio of burned to unburned gas temperature is
set to 2.5, representative of the ratio of lean flame temperature
to compressor outlet temperature. The changes in molar mass
and ratio of specific heats from unburned to burned state are ne-
glected. We consider a can-annular system with 12 cans.

On the upstream side, the can models are uncoupled. This
is evidently a simplification, as there is acoustic communication
through the plenum. However, since the burner pressure loss is
typically significant, we expect that the dominant acoustic com-
munication occurs through the gap in the transition duct at the
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FIGURE 10: Sketch of the n-th can of the can-annular model.
The can communicates with the others via the blue cross-talk
area where the f ,g waves are sketched.

turbine inlet. We also neglect pairwise can-to-can communica-
tion through cross-fire tubes, as these have typically small cross-
sectional areas.

The eigenfrequencies and corresponding azimuthal modal
pressure distributions are obtained as follows. We use the
impedance matrix in can space, Z(ω), as introduced in (10),
whose nq-th element maps the acoustic velocity at the upstream
end of the transition duct in can q to the acoustic pressure in can
n at the same axial location. Furthermore, we combine transfer
matrices and boundary condition of the elements upstream of the
transition duct, i.e., duct, flame response, burner, and upstream
impedance, into a scalar admittance for each can, A(n)(ω), with
can index n:

A(n)=
−iξ tan(khL)(Zpl−ζ M− ikcLb)+1+(Th/Tc−1)Fn(ω)

ξ (Zpl−ζ M− ikcLb)− i tan(khL)
(
1+(Th/Tc−1)Fn(ω)

) .
Here, Zpl is the plenum impedance (set to zero), kc and kh are
wavenumber upstream and downstream of the flame, respec-
tively, ξ is the ratio of characteristic impedances on the hot and
cold side, M is the burner Mach number, Lb the effective length
of the burner, Th and Tc temperatures on the burned and unburned
side, respectively, and Fn(ω) is the flame transfer function in
the n-th can. Instead of choosing one of the many flame transfer
function models available in the literature, we choose a form that
is most appropriate for our purpose:

F (n) = g(n) e−iπ/2, (12)

where we will assign different values to the gain gn in the follow-
ing. By fixing a constant phase to F (n) in (12), all modes in one
cluster of eigenfrequencies will be very similarly amplified. This
is because when the eigenfrequencies are close, the axial mode

shape is similar, and this leads to similar Rayleigh driving. More-
over, if we consider the first cluster of eigenfrequencies, which
is associated with an axial quarter-wave mode that has a node at
the upstream end, a phase of −π/2 provides maximum driving
for the purely acoustic modes. (Note that this does not necessar-
ily hold for the thermoacoustic modes, for which the maximum
driving may be attained for a slightly different phase).

The upstream can admittance can be written as a frequency-
dependent scalar function because the cans are assumed uncou-
pled on the upstream side. In order to formulate the dispersion
relation for the system in a compact fashion, we introduce the up-
stream impedance matrix A(ω), which is diagonal and has ele-
ments (A)(nq) =A(n)δnq. Analogous to the can impedance matrix
Z(ω), the element nq of the admittance matrix maps the pressure
in can q to the acoustic velocity in can n, upstream of the transi-
tion duct. If all cans are identical upstream of the transition duct,
the admittance matrix A(ω) is a multiple of the identity matrix
and then also circulant. However, if we allow for different flame
responses among the cans, A is still diagonal but the diagonal en-
tries will generally be different so that A is no longer circulant.
Now for the pressure field to be continuous at the upstream end
of the transition duct, we require

Z(ω)A(ω)ppp = ppp,

which induces the dispersion relation

det
[
Z(ω)A(ω)− I

]
= 0, (13)

where I is the N×N identity matrix. Solutions ωk to Eq. (13)
are the system’s eigenvalues, Re(ωk) and σk ≡ −Im(ωk) corre-
sponding to angular oscillation frequency and growth rate of the
k-th mode, respectively. The associated modal pressure distribu-
tion (the eigenvector pppk) is then obtained as the nullspace of the
system matrix evaluated at the eigenfrequency [31]:

pppk = ker
[
Z(ωk)A(ωk)− I

]
.

The dimension of the kernel corresponds to the geometric multi-
plicity and thus indicates whether the eigenvalue is degenerate.

We examine the system eigenvalues for three different cases:
(i) there is a temperature increase across the flame but no flame
response; (ii) the flame response is identical in all cans and set
according to Eq. (12) with a gain g(n) = 0.2; (iii) the flame re-
sponse is set as for case (ii), except for the first can, where the
gain is increased to g(1) = 0.6. The lowest cluster of eigenval-
ues, corresponding to an axial quarter-wave mode in the cans,
are displayed for the three cases in Fig. 11. The eigenvalues have
been normalized by the angular eigenfrequency of the quarter-
wave mode in an isolated can, ω0. We consider the case with-
out flame response (black circles) first. As there is no damping
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FIGURE 11: Complex eigenvalues for the three cases considered.
The eigenvalues have been normalized with the angular eigenfre-
quency of the quarter-wave mode of an isolated can. The vertical
axis is the normalized growth rate of oscillation of each mode.
The red numbers refer to the asymmetric case and describe the m-
th azimuthal order of the respective symmetric eigenmode. The
amplitude and phase of each asymmetric mode is presented in
Fig. 12 in the plot with the same red number in the top left cor-
ner.

included in the model, all eigenvalues are purely real (neither
damped nor amplified). There are seven distinct eigenvalues in
one cluster, two of which are simple; the other five have alge-
braic multiplicity two. The two simple eigenvalues correspond
to azimuthal mode orders zero and six and the degenerate ones
to azimuthal orders two to five. This can be predicted entirely
based on the system’s symmetry [31], but we will not repeat these
arguments here for the sake of brevity. The eigenvalues with ho-
mogeneously distributed flame response (blue squares) all have
negative imaginary part (positive growth rate) and are thus un-
stable. Furthermore, no splitting of degenerate eigenvalues is
observed, as the flame response preserves the full symmetry.

For case (iii), in which the gain of the flame response in the
first can is increased by a factor of three (red triangles), part of
the eigenvalues exhibit larger growth rates. Furthermore, all ini-
tially degenerate modes are split because the system does not fea-
ture any discrete rotational symmetry anymore. This is consis-
tent with arguments based on the system’s symmetry group [31]
or the so-called C2n criterion [32]. One of the two split modes as-
sociated with an initially degenerate eigenvalue is seen to remain
unaltered with respect to the symmetric case. This is because the
pressure distributions corresponding to azimuthal orders one to
five can be oriented such that they have a node in the first can so
that the increased flame response gain has no effect. One strik-
ing feature is that the mode with the highest oscillation frequency
also exhibits a distinctly larger growth rate.

We consider the mode shapes in form of the azimuthal pres-
sure distribution at the inlet of the transition ducts next (Fig. 12).
Only those corresponding to the asymmetric case are shown. For
the symmetric cases, the system matrix ZA− I is circulant, and
all eigenvectors are discrete Fourier modes, as presented earlier
in this manuscript and in [30]. While the modes corresponding to
the lower eigenfrequencies are almost unaffected by the asymme-
try, those with higher azimuthal order are seen to strongly differ
from the symmetric case. The mode with the highest oscillation
frequency (bottom right) is affected most; this is also the mode
that gains the biggest increase in growth rate through the asym-
metry (Fig. 11). In fact, this mode shape is quite different from
all the modes corresponding to the symmetric case (the discrete
Fourier modes) and presents an increased amplitude level in a set
of neighbouring cans. We discuss next experimental evidence of
this pattern.

Goldmeer et al. [36, Fig. 14] show a pulsation pattern for
a GE gas turbine that strongly resembles the amplitude pattern
of Fig. 12, bottom right frame (m = 6). Also the experimental
results of Fig. 4b show a larger amplitude in the subset of cans
8-12 that can be caused by a locally increased flame response
due to loss of perfect symmetry of the system. We observe that
this mode localization can be caused by other local perturbation
of the symmetry, i.e. a change in the geometry in one can can
lead to a similar perturbation of the problem and resulting pul-
sation pattern. This explains the experience of Calpine on how
increased pulsation levels in certain cans can be related to local-
ized hardware damage. In particular Sewell et al. [37, Fig. 7.13]
present experimental evidence that a transition piece mechanical
failure is linked to the onset of thermoacoustic oscillations local-
ized in the same can and few nehighbouring cans.

A relatively small asymmetric perturbation can, thus, have
a drastic impact on the azimuthal pressure distribution in a can-
annular system. This effect is indeed reminiscent of mode lo-
calization, a phenomenon that is frequently observed in slightly
asymmetric, weakly coupled systems [38].

CONCLUSIONS
In this manuscript we introduce a low-order model for the

acoustic comunication at the turbine inlet between the transition
ducts of can-annular combustors with N cans. We use the model
to discuss the mode shapes and eigenfrequencies of can-annular
combustors. We predict how azimuthal modes correspond to
certain synchronization patterns of the phases between the ax-
ial acoustic pressure in the cans. We validate these patterns with
engine data of a 14-can combustor.

We discuss the equivalent reflection coefficient of the set of
N transition ducts for a thermoacoustic mode of a certain az-
imuthal order m. We present the asymptotic behaviour in the
zero Hz limit and its physical interpretation. We study the eigen-
frequencies of can-annular systems as function of the overall ax-
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FIGURE 12: Visualization of the azimuthal mode shapes associated with the eigenvalues of the asymmetric case (Fig. 11). Ordered from
left to right and top to bottom with increasing oscillation frequency. The bar height indicates the pressure amplitude and the bar color the
phase (same color legend as in Fig. 3), at the interface between each can and each transition duct. The number in the top left corner is the
azimuthal order m of the corresponding mode in the symmetric case. Couples of modes with the same m differ very little in frequency
and can result in a slowly modulated linear combination with approximately constant amplitude along the annulus. This is not the case
for the perturbed push-pull mode in the bottom right corner, where cans 1,2,3,10,11,12 present much larger amplitude than the others.

ial length of the cans and predict the occurrence of clusters of
eigenmodes with very close frequencies. Within a cluster the fre-
quencies of the modes are increasing as function of the azimuthal
order m of the modes. These clusters are a peculiar feature of
can-annular combustors as opposed to annular combustors. We
present experimental evidence of these clusters with engine data
of a 12-can combustor.

After analyzing the problem from a system perspective in
the space of the azimuthal modes, we change perspective and dis-
cuss the direct interaction between each pair of the N cans. We
show how the two perspectives are linked by the discrete Fourier
transform in the spatial azimuthal direction. We discuss how at
low frequencies the coupling strength between two cans depends
on their distance. As a result, in this low frequency regime an
axial acoustic wave travelling downstream a fixed transition duct
is primarily reflected back, and only partially transmitted to the
other cans. Of the transmitted part, the strongest transmission
occurs towards the two closest neighbouring cans. This suggests
that the coupling between cans is low, as compared to the feed-
back loop of each can with itself due to the reflection, and that
we can look at the set of N cans as a set of weakly coupled oscil-
lators. Because the strength of the coupling is stronger between

cans that are close, synchronization between neighbouring cans
is stronger when a whole cluster of modes is excited in the sys-
tem.

We finally discuss the effect of a loss of rotational symmetry
in the system and show that it is responsible of mode localiza-
tion. We start with a model of a symmetric can-annular com-
bustor with N = 12 cans and artificially increase the response of
the flame in can number 1, to mimick a generic local change of
the system. We find that the shapes of the eigenmodes forming
the cluster present a strong sensitivity against this perturbation.
This strong sensitivity is typical of systems that show clusters of
eigenmodes and is then a peculiar feature of can-annular com-
bustors, as opposed to annular combustors, which do not exhibit
clusters nor a strong sensitivity of the mode shapes on the loss of
rotational symmetry. We observe that in the can with a stronger
flame response the push-pull mode shows the strongest change
both: 1) in the amplitude pattern, with a strong increase of am-
plitude in the same can, and to a smaller extent to its neighbours;
2) in the growth rate, in particular in a linear framework it is
the mode by far excited the most. We then review how the pul-
sation amplitude pattern of this mode has been experimentally
observed in three different engines. In one case, this was found
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to be caused by a localized structural damage in one can.
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