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Abstract: Practical combustion systems can have linearly unstable axial thermoacoustic modes that
oscillate at close frequencies. These modes are nonlinearly coupled and their interaction can result
in novel dynamics when the frequency spacing is much smaller compared to the mean frequency of
oscillations. In this study, we consider frequency spacing of up to 10 percent of the mean frequency.
In a recent paper, Acharya et al. (Combustion and Flame 2018) showed that a mode with larger
growth rate could be suppressed depending on the frequency spacing between the modes. In this
paper, we extend the work by Acharya et al. to include the effects of noise in the system and
we explore how the deterministic dynamics change in the presence of noise. Noise can alter the
behavior of the system significantly by changing the average amplitudes and the stability of the limit
cycle oscillations. In order to study these noise-induced features, we derive the stochastic evolution
equations for the amplitudes and phases of the two modes using an averaging procedure. Then, we
analyze the dynamics of the system in its state space and numerically obtain the probability density
functions of amplitudes and phases for a set of parameters. For sufficiently high noise intensity, we
observe that both modes coexist and the system switches between them in an irregular manner when
they evolve in time.
Keywords: Thermoacoustic oscillations, stochastic dynamics

1. Introduction

Lean premixed combustors are susceptible to large amplitude pressure and velocity oscillations
known as thermoacoustic instability. This instability occurs when a positive feedback loop is
established between the unsteady heat release rate and the acoustic modes of the combustor [1–
3]. As a result of this coupling, the pressure and velocity fluctuations can grow in amplitude
and eventually saturate to a large amplitude oscillatory state. These oscillations can reduce the
performance of the combustor and in the worst case lead to increased wear [4, 5]. Therefore, it is
important to predict the onset of thermoacoustic oscillations and the amplitude of the oscillations
attained by the system.

A linear analysis could be adopted to predict the transition to thermoacoustic oscillations. How-
ever, this analysis cannot determine the amplitude and frequency of the limit cycle oscillations or
detect any complex dynamical features displayed by the system. In order to completely describe
these dynamical states, it is important to understand the nonlinear features of the system. For gas

1



Sub Topic: Internal Combustion and Gas Turbine Engines

turbine combustors, the nonlinearity mainly arises from the response of the flame to acoustic per-
turbations. This nonlinear response can be approximately quantified using the Flame Describing
Function [6]. A Flame Describing Function provides the response of the flame to a sinusoidal input
at the forcing frequency. The response at all other frequencies other than the forcing frequency are
neglected in this formulation. This approach works well when the system has a single dominant
frequency. In many practical combustors, there could be two modes that are linearly unstable and
their natural frequencies could be different from each other. In such cases, a Flame Double Input
Describing Function can be adopted to quantify the nonlinearity in heat release rate response [7, 8].
This is an extension to the Flame Describing Function framework where the flame is now forced
with two amplitudes and two frequencies. Orchini and Juniper [9] has shown that this approach is
useful in accurately predicting the stability, frequency and amplitude of quasi-periodic oscillations.
In this paper, we analyze a system of two coupled thermoacoustic modes that are closely spaced
in the frequency domain. In general, a Flame Double Input Describing Function formulation need
to be used when the system has two distinct frequencies. However, we can still adopt a single
describing function approach if the frequency spacing between the modes is small. The details of
this approximation are provided in Section 2.

In a recent work, Acharya et al. [10] used the method of averaging and derived evolution
equations for a system of closely spaced thermoacoustic modes. The averaging procedure can be
adopted for this system since the frequency spacing between the modes is small. Acharya et al.
[10] showed that a mode with larger growth rate could be suppressed and the mode with lower
growth rate could evolve to a limit cycle. Such non-trivial dynamics occur when the modes are
closely spaced and the spatial mode shapes satisfy certain conditions. In this paper, we extend
the work by Acharya et al. [10] to include effects of background noise on the dynamics of closely
spaced modes. It is important to understand the stochastic characteristics of the system since
practical combustion systems operate in a turbulent environment. So, the response of the flame
to incoherent background fluctuations need to be taken into account to fully describe the system.
These background fluctuations can alter the qualitative features of the system. For instance, it can
change the average amplitudes of the limit cycle oscillations or the stability characteristics of the
system [11]. These noise sources can also affect the evolution of each mode differently. So, a
stochastic analysis might be necessary to explain some of the behavior observed in experiments.

The aim of this work is to develop a framework to analyze the dynamics of closely spaced
thermoacoustic modes in the presence of noise. The framework developed here follows the work
by Giulio et al. [12] on azimuthal thermoacoustic modes although the equations derived here are
for closely spaced modes. Then, we explore how the conclusions derived from a deterministic
analysis can change when the system evolves in the presence of noise. Further, we look for any
novel dynamical features displayed by the noisy system that cannot be revealed by a deterministic
analysis.

2. Mathematical formulation

The governing equations for the coupled thermoacoustic modes are derived from the non-dimensional
inhomogeneous wave equation given by [13].

∂2p

∂t2
−∆2p= (γ−1)q̃δ(x−xf ) (1)
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where p is the acoustic pressure and q̃ is the fluctuating heat release rate. We assume that the heat
release is concentrated at the burner location (xf ). The acoustic pressure can be expanded using
the Galerkin formulation as [3, 13].

p(x, t) = η̇1(t)ψ1(x) + η̇2(t)ψ2(x) (2)

The fluctuating heat release rate can be decomposed into

q̃ = Q̃+ q̃s (3)

where Q̃ and q̃s are the deterministic and the stochastic part of the unsteady heat release rate
respectively. The deterministic function Q̃= Q̃[pf (t)] at the flame location is given as

Q̃= Q̃[η̇1ψ1(xf ) + η̇2ψ2(xf )] (4)

where pf is the pressure fluctuation at the flame location. Define the function Q = (γ − 1)Q̃.
Substitute (2), (3) and (4) into (1). Then project it along each eigenfunction (ψ1 and ψ2) to obtain
the following coupled oscillator equations

η̈1 +ω2
1η1 = ψ1(xf )

Λ1
Q[η̇1ψ1(xf ) + η̇2ψ2(xf )]− α̃1

Λ1
η̇1 + σ̃1

Λ1
ξ(t) (5a)

η̈2 +ω2
2η2 = ψ2(xf )

Λ2
Q[η̇1ψ1(xf ) + η̇2ψ2(xf )]− α̃2

Λ2
η̇2 + σ̃2

Λ2
ξ(t) (5b)

where ξ(t) is a noise term obtained from the following integral (for the first mode)

γ−1
Λ1

∫
Ω
q̃s(x, t)ψ1(x)dV = σ̃1

Λ1
ξ(t) (6)

where σ̃1 and Λ1 are constants. Note that the stochastic part of the unsteady heat release rate q̃s is
assumed to be acoustically compact in (6). We can derive a similar expression for the noise term
in (5b) for the second mode. We assume that ξ(t) is a Gaussian noise source with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t+ τ)〉= δ(τ). Denote α1 = α̃1/Λ1,α2 = α̃2/Λ2,σ1 = σ̃1/Λ1 and σ2 = σ̃2/Λ2.
Introduce change of variables η̇1 = A1(t)cos(ω1t+ϕ1(t)) and η̇2 = A2(t)cos(ω2t+ϕ2(t)). For
simplicity, set ψ1(xf ) = ψ2(xf ) = 1. If we assume that the amplitude and phase functions are
slowly varying with respect to the frequency of oscillation, then we can derive the following rela-
tions.

η1 = A1
ω1

sin(ω1t+ϕ1) (7a)

η2 = A2
ω2

sin(ω2t+ϕ2) (7b)

We can also get two constraint equations that link the time derivatives of amplitude and phase
given by

Ȧ1 sin(ω1t+ϕ1) +A1ϕ̇1 cos(ω1t+ϕ1) = 0 (8a)
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Ȧ2 sin(ω2t+ϕ2) +A2ϕ̇2 cos(ω2t+ϕ2) = 0 (8b)

Substitute (7), (8) into (5). Then perform the following change of variables

A1 = Acos
(
π

4 +χ
)

(9a)

A2 = Asin
(
π

4 +χ
)

(9b)

where χ ∈ [−π/4,π/4]. Rewrite (2) to obtain the following expression for pressure fluctuations at
the flame location

p(xf , t) = pf (t) = Ãcos(ω̄t+ φ̄) (10)

where ω̄ = (ω1 +ω2)/2 and Ã is defined as

Ã=
√

(A2−A1)2 sin2 θ

2 + (A2 +A1)2 cos2 θ

2 (11)

where θ = ∆ωt+ϕ2−ϕ1, ∆ω = ω2−ω1 and

φ̄= ϕ̄+ arctan
(

tanχtan θ2

)
(12)

Then, we can express Ã in terms of A,χ and θ as follows (using the definition (11))

Ã2 = A2(1 + cos2χcosθ) (13)

We introduce these new variables Ã and φ̄ so that we can express the heat release rate response
Q[pf (t)] using a single describing function. We can see from (10) that the pressure fluctuations at
the flame location can be expressed in terms of a single amplitude and phase function. Now, define
the flame describing function S(Ã, ω̄) as

S(Ã, ω̄) = 1
Ã

ω̄

π

∫ 2π
ω̄

0
Q[Ãcos(ω̄t)]e−ιω̄tdt (14)

Note that Im[S(Ã)] = 0. Perform stochastic averaging [14] to obtain the following equations.

Ȧ=Ã
2 Re[S(Ã)]

4A

( 1
Λ1

+ 1
Λ2

)
+ ARe[S(Ã)]

4 sin2χ
( 1

Λ2
− 1

Λ1

)
− A4 (α1 +α2)− A4 sin2χ(α2−α1)

+ σ2
1

4A + σ2
2

4A −
σ1σ2 cos2χcosθ

4A + sin2χ
8A (σ2

1−σ2
2)− σ1σ2 cosθ

4A sec2χ+ ξA

(15a)

χ̇=Re[S(Ã)]
4 (cos2χ+ cosθ)

( 1
Λ2
− 1

Λ2

)
− Re[S(Ã)]

4 sin2χcosθ
( 1

Λ2
+ 1

Λ1

)
+ (α1−α2)

4 cos2χ

+ (σ2
1−σ2

2)cos2χ
4A2 + σ1σ2 sin2χcosθ

2A2 + σ2
2

8A2

(1− sin2χ
cos2χ

)
− σ2

1
8A2

( cos2χ
1− sin2χ

)
+ ξχ

(15b)
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θ̇ = ∆ω− Re[S(Ã)]
2 sinθ

(1− sin2χ
Λ2 cos2χ + cos2χ

Λ1(1− sin2χ)

)
+ σ1σ2 sinθ

2A2 cos2χ + ξθ (15c)

where the noise terms follow 〈ξi〉= 0 and 〈ξi(t)ξj(t+ τ)〉= 2Ki,j
2 δ(τ) and

KA,A
2 = σ2

1
8 (1− sin2χ) + σ1σ2

4 cosθ cos2χ+ σ2
2

8 (1 + sin2χ) (16a)

Similarly, we can get the following relations

KA,χ
2 = σ2

1
8A(1− sin2χ)− σ2

2
8A(1 + sin2χ) (16b)

KA,θ
2 =−σ1σ2

2
sinθ sec2χ

A
(16c)

Kχ,χ
2 = σ2

1
8A2 (1− sin2χ)− σ1σ2

4A2 cosθ cos2χ+ σ2
2

8A2 (1 + sin2χ) (16d)

Kχ,θ
2 =−σ1σ2

4
sinθ
A2

(1− cos4χ−2sin2χ
cos2χ(1− sin2χ)

)
(16e)

Kθ,θ
2 = σ2

1
2A2(1− sin2χ) + σ2

2
2A2(1 + sin2χ) −

σ1σ2
A2 cos2χ cosθ (16f)

Interpreting the variables A,2χ and θ as spherical coordinates, it is easy to visualize the phase
space of the system. θ ∈ [−π,π] is the longitude angle and 2χ ∈ [−π/2,π/2] is the latitude angle.
A refers to the amplitude in the radial direction. A similar geometric interpretation of the system
in spherical coordinates is presented in Giulio and Bothien [15]. In this coordinate system, if the
solution lies near χ= π/4, it means that the second mode is dominant. Similarly, if if the solution
lies near χ = −π/4, then the first mode is the dominant mode. Note that a mode is considered
dominant when the amplitude of that mode is larger than the other mode. θ is the synchronization
parameter that shows the total phase difference between the two modes.

3. Results

In the following analyses, we consider a describing function of the form

Re[S(Ã)] = β−κÃ2 (17)

where β and κ are constants. A common tool used to study the dynamics of nonlinear deterministic
systems is the phase portrait. This portrait reveals the trajectories that are followed by the system
for any given initial condition. It helps in detecting any attractors, repellors or any invariant sur-
faces in the system. For noisy systems, we can obtain similar phase portraits termed as stochastic
phase portraits [16]. These portraits are derived from Ito stochastic differential equations by set-
ting the diffusion matrix to zero. This gives rise to a set of ordinary differential equations which
can then be analyzed in the phase space. These differential equations include the effect of drift
introduced by the noise terms in the system. Note that Eq. (15) is a set of Ito equations. So, we set
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the diffusion matrix K2 to zero and analyze the resulting set of differential equations in the phase
space.

The phase portrait of the system (15) in the χ− θ plane is shown in Fig. 1(a). The system is
mapped on to the surface given by Ȧ = 0 in order to obtain this phase plot. The vector field is
given by the blue streamlines in the plot. The green-yellow colormap shows the magnitude of he
vector field. The thick and dashed black lines denote the χ and θ nullclines respectively. Since
the phase portrait is obtained on the Ȧ = 0 surface, fixed points can be identified as those points
where the thick and dashed lines coincide. The streamlines show that θ keeps increasing expect
near the fixed points. Since this is a 3D system, we will need to consider an additional surface to
get a complete picture of the phase space. So, we consider the phase portrait along a θ = constant
plane as shown in Fig. 1(b). The value of the constant in this figure is 1.8. We can see that all the
streamlines converge towards the Ȧ = 0 surface and the long term evolution is constrained to this
surface. On this surface, the system moves in the direction of increasing θ i.e., the system revolves
around along the latitude lines and approach one of the attractors situated near the poles. Also we
can observe a saddle like region on the Ȧ= 0 line that demarcates the basin of attraction of the two
attractors.

Figure 1: The stochastic phase plot (a) in the χ− θ plane obtained along the Ȧ = 0 surface and in
the (b) χ−A surface obtained along θ = 1.8. The grey vertical line in (a) corresponds to θ = 1.8.
The green-yellow colormap shows the magnitude of the χ−θ vector field. The red-blue colormap
shows the value of θ̇. The dotted line is the nullcline, the thick line is the χ nullcline and the
dashed line is the θ nullcline. Parameters are β = 0.04,κ = 1,α1 = 0.02,α2 = 0.01, ω̄ = 1,∆ω =
0.1,σ1 = σ2 = 2×10−3,Λ1 = Λ2 = 1.

We can also numerically obtain the probability density functions of A,χ and θ for the same set
of parameters (see Fig. 2). We see that both modes can be dominant since there are two distinct
peaks in the pdf of χ. However, the mode with lower damping coefficient (mode 2 in this case)
is the most probable dominant mode. We can explain this behavior using the phase portrait in
Fig. 1(b). Note that the attractor close to χ = π/4 has a larger basin of attraction. This means
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that there is a higher chance of visiting this attractor when you run time domain simulations of
the stochastic differential equations. Even if we provide initial conditions close to the solution
χ = −π/4, the system can evolve towards the solution near χ = π/4 given enough time. This
behavior where the dominant mode "hops" has been observed in experiments [17]. Note that
Λ1 = Λ2 in this case which corresponds to the situation where the feedback from the heat release
rate fluctuations on each mode is the same.

Figure 2: The pdfs of A, χ and θ along with the amplitude specta of η1 and η2. Parameters are
β = 0.04,κ= 1,α1 = 0.02,α2 = 0.01, ω̄ = 1,∆ω = 0.1,σ1 = σ2 = 2×10−3,Λ1 = Λ2 = 1.

In Fig. 3, we present stochastic phase portraits obtained for a higher noise intensity. We can
notice that the nullclines do not cross each other in Fig. 3(a). So there are no fixed points visible
in the phase portrait. However, we can notice two main regions where the magnitude of the vector
field are very small. Since the noise intensity is high in this case, the system can easily switch
between these two regions which we call "attractors". This means that the dominant mode keeps
switching in an irregular manner as the system evolves in time. From the corresponding pdfs
presented in Fig. 4, we can see that the system remains near the attractor close to χ = π/4 for a
longer period of time. Therefore, the second mode (the mode with lower damping coefficient) is
the most probable dominant mode although the dominant mode keeps switching in time. Now if
we pay our attention to the phase portrait in Fig. 3(b), we can see the point where the A and χ
nullclines cross will be observed for any θ section we consider (compare with Fig. 3(a)). Also,
this point attracts all the nearby streamlines. So, in the phase space, this will look like a limit cycle
oscillation. So a bifurcation in the system has occurred as the noise intensity is increased from
2×10−3 to 1×10−2.
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Figure 3: The stochastic phase plot (a) in the χ− θ plane obtained along the Ȧ = 0 surface and in
the (b) χ−A surface obtained along θ = 2.2. The grey vertical line in (a) corresponds to θ = 2.2.
The green-yellow colormap shows the magnitude of the χ−θ vector field. The red-blue colormap
shows the value of θ̇. The dotted line is the A nullcline, the thick line is the χ nullcline and the
dashed line is the θ nullcline. Parameters are β = 0.04,κ = 1,α1 = 0.02,α2 = 0.01, ω̄ = 1,∆ω =
0.1,σ1 = σ2 = 1×10−2,Λ1 = Λ2 = 1.

Figure 4: The pdfs of A, χ and θ along with the amplitude specta of η̇1 and η̇2. Parameters are
β = 0.04,κ= 1,α1 = 0.02,α2 = 0.01, ω̄ = 1,∆ω = 0.1,σ1 = σ2 = 1×10−2,Λ1 = Λ2 = 1.
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4. Conclusions

This paper investigates the dynamics of two closely spaced thermoacoustic modes in the presence
of noise. This system is modeled using a set of coupled oscillator equations that are perturbed by
noise. In this study, we use a single describing function formulation to approximate the nonlinear
feedback of the flame to both modes. Then, we adopt the stochastic averaging procedure to derive
the evolution equation for the amplitudes and phase difference of the two modes. We identify
a new set of state variables A,χ and θ that enable us to obtain a geometric interpretation of the
system.

We analyze this system using stochastic phase portraits and the probability density functions
of the variables A,χ and θ obtained numerically. We identify the qualitative features of the sys-
tem for two sets of noise intensities. For low noise, we find that both modes can be dominant.
However, the most probable dominant mode is the one with lower damping coefficient (for the
set of parameters considered in this study). For higher noise level, the behavior of the system is
qualitatively different. In this case, we find that there are no fixed points in the system. However,
a limit cycle-like attractor appears in the phase space. This means that the dynamics of the system
is qualitatively different when compared to the low noise case. Further, the dominant mode keeps
switching in an irregular manner as the system evolves in time.
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