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Can-annular combustors consist of N distinct cans set up
symmetrically around the axis of the gas turbine. Each can is
connected to the turbine inlet by means of a transition duct.
At the turbine inlet a small gap between the neighbouring
transition ducts allows acoustic communication between the
cans. Thermoacoustic pulsations in the cans are driven by
the respective flames, but also the communication between
neighbouring cans through the gap plays a significant role.
In this study we focus on the effect of the background noise
intensity and of the nonlinear flame saturation. We predict
how usually clusters of thermoacoustic modes are unstable
in the linear regime and compete with each other in the non-
linear regime, each cluster consisting of axial, azimuthal and
push-pull modes. Since linear theory cannot predict the non-
linear solution, stochastic simulations are run to study the
nonlinear solution in a probabilistic sense. One outcome of
these simulations are the various pulsation patterns, which
are in principle different from one can to the next. We re-
cover how a stronger flame response in one can can give rise
to the phenomenon of mode localization, but also how the
nonlinearity of the flame saturation and the competition be-
tween modes have an effect on the nonlinear mode shape.
We finally predict the coherence and phase between cans on
the linearized system subject to noise, and compare the pre-
dictions with engine measurements, in terms of spectra of
amplitude in each can and coherence and phase, observing a
good match.

INTRODUCTION
Can-annular combustors are common in heavy-duty

land based gas turbines [1, 2]. In this design the air flows
from the compressor outlet to the combustor plenum, where
the air stream splits into N cans. In each can the fuel is in-
jected with one or more fuel injectors, downstream of which
one or more combustion zones are formed [2]. After the
last combustion zone, the hot gas flows into the turbine in-
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let. Since the can cross section is circular and the inlet of the
turbine is an annular gap, a special transition duct is designed
to suitably link the two, as sketched in Fig. 1.

Due to the flame response to acoustic waves, a positive
feedback loop can form between the acoustics of the com-
bustion chamber and the flames, leading to self-excited ther-
moacoustic oscillations [4]. On a qualitative level, acoustic
and thermoacoustic modes in can-annular and in annular sys-
tems share some similarity. This is because both configura-
tions nominally feature discrete rotational symmetry. In this
ideal symmetric case, most of the acoustic and thermoacous-
tic modes are degenerate, i.e., they have an additional degree
of freedom with respect to their specific space–time struc-
ture (standing vs. spinning, nodal line orientation). How-
ever, the modal structure significantly differs. While in an
annular combustor the lower-frequency modes are usually
sufficiently spaced apart so that their interaction is not essen-
tial (exceptions exist in special cases [5]), can-annular sys-
tems generically exhibit clusters of closely spaced eigenval-
ues [3]. This feature can be attributed to the special structure
of a can-annular combustor with its weakly coupled, nomi-
nally identical subsystems (the cans). It is known from struc-
tural vibration theory that such systems exhibit sets of closely
spaced eigenvalues [6]. This spectral structure makes these
systems highly sensitive to parametric perturbations and may
give rise to the formation of localized modes if the nominal
symmetry is perturbed [7]. It was shown in the recent work
of Ghirardo et al. [3] that this may indeed be observed for
thermoacoustic modes in can-annular systems with perturbed
symmetry.

Recent work of Farisco, Panek et al. [8–10] studies in
particular the acoustic communication between adjacent cans
at the turbine inlet. The work of Ghirardo et al. [3], presented
one year ago at the ASME Turbo EXPO 2018 in Oslo, fo-
cused especially on the acoustic response of transition ducts.
Thermoacoustic dynamics in real engines are subject to sig-
nificant levels of background noise, which perturb the system
in a stochastic way [11–13]. The effect of noise on the ther-
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(a) 3D sketch of a transition duct (b) Front view of the air volume (c) Side view of the air volume

Fig. 1: Geometry of a typical transition duct and the simplifications leading to the 2D model discussed by [3]. The com-
municating gap between two adjacent transition ducts is colored in gray, with an axial length Lgap. At the turbine inlet,
each transition duct covers a span H in the azimuthal direction. The nondimensional number governing the strength of the
communication between the cans is Lgap/H. Figures from [3]

moacoustics of can-annular systems has not been considered
yet.

In the present work, a qualitative model consisting also
of a set of cans is discussed, with a focus on the dynam-
ics of the whole system. We present a comparison between
model and engine measurements, highlighting the effect of
the background noise on the system dynamics. We tackle the
problem by increasing the level of complexity from one sec-
tion to the next. We consider first in the linear regime both
the symmetric case and the non-symmetric case, discussing
some new results on the sensitivity of the acoustics of can-
annular systems. We then discuss the nonlinear case and the
effect of noise, and compare this to engine data.

can

can model transition duct model

pulsation
sensor

Fig. 2: Sketch of one can and respective transition duct. The
full model consists of N blocks like this one, connected at the
turbine inlet where the acoustic waves f and g travel through
the two gaps drawn in blue on the right, with gap length Lgap

as presented in Fig. 1. Z(nq) is the N×N impedance of the
set of N transition ducts, with inputs the N acoustic veloc-
ities u(q) and output the N acoustic pressures p(n). On the
upstream end of the transition ducts, these are related by the
can admittance A(n)

THE MODEL
The acoustic modelling of a set of N transition ducts

communicating at the turbine inlet was discussed by [3], and
only a brief description follows here. The model depends on
three characteristic lengths reported in Fig. 1: the length L
of the transition duct, the span H at the turbine inlet, and the
length Lgap of the gap between adjacent cans, often referred
to as cross-talk area. Full acoustic reflection at the turbine
inlet is assumed because the flow is close to choked [14],
and entropy waves’ reflection and mean flow effects are ne-
glected. We also focus on acoustic frequencies below the
cut-on frequency of the duct, so that all modes considered
are axial at the upstream end of the transition ducts and that
a truncated series expansion of the Green function of the
wave equation can be used efficiently to model the acous-
tic response of the set of transition ducts [15]. Because the
mean azimuthal velocity Uθ just upstream of the turbine inlet
is usually very small in can-annular combustors, we set it to
zero. Under these assumptions the set of transition ducts is
not just rotationally symmetric, but also reflection symmet-
ric. This will affect the spectrum of the problem in the next
section.

The full model accounts also for the N cans, each con-
nected upstream of each transition duct as in Fig. 2. In par-
ticular, each can consists of a straight duct closed on the up-
stream end, a burner element that accounts for an area con-
traction and expansion, a flame and the transition duct. The
area contraction and burner are modelled by means of an L-ζ
model, which accounts for local acoustic damping occurring
because of the pressure drop [16].

THE LINEAR SYMMETRIC CASE
Can-annular combustors are only to a first approxima-

tion rotationally symmetric, with each can not exactly the
same as the other. This can occur for example because
of small geometrical differences in the hardware leading to
different mass flow rates between cans, azimuthal inhomo-
geneities in the air intake from the compressor into the com-
bustor plenum, and inhomogeneities in the fuel distribution
to each can. It is however useful to study the real-world, ro-
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tationally non-symmetric case as a perturbation of the sym-
metric case, which is discussed in this section.

We consider N = 12 identical cans, with the n-th can at
the azimuthal position

θn = 2πn/N n = 1,2, . . . ,12 (1)

When the system is symmetric, Bloch wave theory guaran-
tees that the mode shapes in the frequency domain can be
written as [17, 18]:

p̂(xxx) = ψ(xxx)eimθ, m =−N/2+1, . . . ,0,1, . . . ,N/2
(2)

In (2), xxx denotes a point in the three-dimensional space,
which in cylindrical coordinates corresponds to (r,θ,z),
where the azimuthal coordinate θ goes from 0 to 2π. The
function ψ(xxx) is periodic in θ with a period 2π/N, and de-
scribes the near-field solution. The solution p in all the cans
is the near-field solution ψ modulated by the complex expo-
nential eimθ, and except for m = 0 it is periodic in θ with
period 2π/m. For completeness, for m = 0 the solution p in
(2) matches ψ and is periodic in θ with period 2π/N. By
direct substitution into (2) we observe that

• m = 0 corresponds to an axial mode, with the same
amplitude and mode shape in each can.
• m = N/2 corresponds to a push-pull mode, with the
same amplitude and mode shape in each can but oppo-
site sign (each can is in anti-phase with its neighbours)
• other cases like m = ±n correspond to a rotating az-
imuthal wave of order n in the clockwise/anticlockwise
direction

For this reason, we call m in (2) the azimuthal order of the
solution, and we can classify all the solutions by their az-
imuthal order. We next consider the dependence of the eigen-
frequencies of the system as function of the geometry, re-
spectively the can length Lcan and the gap length Lgap.

We calculate the frequencies and the growth rates of the
system by means of a linear stability analysis for discrete val-
ues of Lcan, while keeping Lgap constant. In Fig. 3 for each
discrete value of Lcan the frequencies are reported on the hor-
izontal axis, with the azimuthal order of the respective mode
shape appearing in the legend. In Fig. 3 and the following all
angular frequencies have been normalized by dividing them
by ω0, which was chosen to have all frequencies of interest
in the range between 0 and 3ω0/2.

Because of the reflection symmetry of the system the
eigenvalues of the azimuthal mode of order +n and of the
azimuthal mode of order −n perfectly overlap and are de-
generate. For simplicity, we report them simply as modes of
order n in Fig. 3 and in the following. In Fig. 3 for a fixed
value of Lcan the markers appear in clusters that are close in
frequency. In each cluster the mode at the lowest frequency is
the axial mode, and the mode at the highest frequency is the
push-pull mode. The visible clusters correspond to the first

Fig. 3: Sensitivity of the purely acoustic frequencies of the
system to the can length Lcan described in Fig. 2. Each row of
symbols corresponds to a stability analysis for a fixed value
of Lcan with the effect of the flame response switched off. We
observe how modes appear in clusters, highlighted with blue
boxes for the largest considered value of Lcan. In each cluster
there are modes with azimuthal order m varying from m = 0
to m= 6, as discussed after (2). The baseline case considered
in the rest of the paper is reported with empty markers. Fig. 4
zooms in on the baseline cluster between vertical black lines
and considers a different sensitivity

few axial modes of a single can system, which match the ax-
ial solution presented with a black triangle. For a fixed Lcan
the clusters are more compact as frequency increases, i.e. the
12 modes1 in each cluster are closer together the larger is the
frequency of the cluster. We observe that also in can-annular
systems a longer length leads to a decrease of the frequency
of the respective mode, as is typical of the axial modes in a
one-dimensional duct as function of the duct length. In the
following we fix Lcan to a constant baseline value, for which
the respective markers in Fig. 3 are empty.

To study the sensitivity on Lgap, we zoom in on one clus-
ter of the baseline case, in the frequency range in Fig. 3 be-
tween the two vertical black lines. The same cluster with
empty markers appears in Fig. 4 for the baseline value of
Lgap. We zoom in on one cluster because the gap length Lgap
acts on each cluster of eigenmodes: in Fig. 4 the smaller the
gap the closer are the frequencies of the cluster. In particu-
lar we observe that the frequency of the axial mode does not
depend on Lgap, while the higher the azimuthal order of the
mode m, the more its frequency departs from the axial fre-
quency. We also observe that in the limit of Lgap→ 0 the fre-
quencies of all the other modes of the cluster seem to tend to
the frequency of the axial mode. Physically, this happens be-
cause in the limit of Lgap→ 0 the cans are not anymore com-
municating, and this would appear as N = 12 eigenmodes at
the same exact eigenvalue, each with a localized mode shape
in each can.

We present in Fig. 5 the predicted linear stability of the

1to these N = 12 modes correspond only (N + 1)/2 = 7 markers in the
figure. This is because 5 modes are degenerate and are presented with the
same marker, and 2 modes (m = 0,6) are not degenerate, for a total of 7
visible markers
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Fig. 4: Sensitivity of one of the clusters of Fig. 3 to the
gap length Lgap between cans described in Fig. 1. Each row
of symbols corresponds to a different value of Lgap and is ob-
tained with the effect of the flame response switched off. The
frequency of the axial m = 0 mode is unaffected by Lgap, and
smaller values of Lgap lead to a narrower cluster. In the limit
Lgap → 0 all the eigenvalues of the cluster collapse on the
axial mode, and each can oscillates by itself without interac-
tion with the others. The baseline case considered in the rest
of the paper is reported with empty markers, and coincides
with the empty markers’ cluster between vertical black lines
in Fig. 3

system in terms of frequencies and growth rates, first with the
flame response switched off in all cans (black numbers) and
then switched on (red numbers). Instead of presenting each
eigenvalue with a marker, we plot at the same position the
integer of the respective azimuthal order m of the mode. The
frequencies ω of the case without flame match the frequen-
cies presented for the baseline case in Figs. 3 and 4, except
for the cluster at the lowest frequency that is too damped to
appear in Fig. 5. In the same figure we also present in blue
the result obtained if we close all the gaps at the turbine inlet.
In this symmetric case all cans are the same and their eigen-
values overlap exactly on the same blue markers and on the
axial modes.

The respective mode shapes of the case with flame are
presented in Fig. 6. We do not present the full spatial struc-
ture, but just the amplitude (height of the bars) and phase
(color of the bars) of the acoustic pressure at the flame lo-
cation in each can. For the modes with low azimuthal order
m = 1,2 it is possible to distinguish by eye their azimuthal
nature by just following the envelope of the amplitude of the
mode along the annulus. We observe however that for m≥ 3,
for a number of cans equal to N = 12 it is difficult to tell by
eye the azimuthal order of the mode, because the wavelength
is not much larger than the can spacing. For this specific case
the most unstable mode is a push-pull mode at a frequency
slightly larger than ω0, but we also find that the whole cluster
of eigenmodes close to ω0 is unstable. It is then not possible,
based only on the results of the linear stability analysis, to
draw conclusions on the state of the system in the nonlinear
regime.

Fig. 5: Linear stability analysis for the symmetric case.
Each marker/number is the eigenvalue of one thermoacoustic
mode. The horizontal axis is the real part of the eigenvalue,
the frequency in Hz of the mode. The vertical axis is the
real part σ of the eigenvalue divided by the imaginary part
ω, i.e. the nondimensional growth rate σ/ω. Positive values
of σ correspond to linearly unstable thermoacoustic modes
whose amplitude grows with time in the linear regime, while
negative values correspond to stable modes whose amplitude
diminishes in time, which are predicted to not be measured
in a time domain simulation and in a test. The black markers
correspond to the case when the effect of the flame response
is switched off in the model and are all stable. When the
flame response is switched on (red markers) some of these
modes jump in the upper half plane and become unstable.
The shapes of the most unstable modes for the case with the
flame on are presented in Fig. 6. We present also with blue
markers the prediction for the system when the gap is com-
pletely closed, with and without flame

THE LINEAR NON-SYMMETRIC CASE
In this section we perturb the rotational symmetry of the

system, and consider an asymmetry in the flame response.
An actual asymmetry, for example, the burner geometry,
pressure loss or fuel injection, will generally affect both gain
and phase (or time delay) of the flame response. Here, we
only consider can-to-can variations in the gain and find that
they reproduce the experimental observations.

Discussing a general loss of rotational symmetry of the
flame response has already been done in the past in thermoa-
coustics. One analytic approach to the problem consists to
use as ansatz the mode shape of the symmetric problem. The
governing equations of the non-symmetric problem are then
projected on this ansatz, and linear sensitivities of the eigen-
value are calculated [19]. This procedure assumes that the
change of the shape of the mode of interest due to the loss
of symmetry is negligible. This usually holds for azimuthal
instabilities in annular combustors because there are no other
modes that are close to the degenerate mode of interest2 and

2indeed, annular combustors have azimuthal modes whose frequencies
in a first approximation scale like fn = nc/πD n = 1,2 . . ., where c is the
speed of sound and D is the diameter of the combustion chamber. It is
clear from this expression that these modes are far from each other with
a frequency spacing of c/πD and do not form a cluster as modes in can-
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Fig. 6: Mode shapes of the symmetric case, with the flame response switched on, for the first 11 most unstable eigenmodes
of the linear stability analysis with the flame on (red markers in Fig. 5). Each frame corresponds to an eigenmode, and the
frames are ordered from left to right and top to bottom by decreasing value of the nondimensional growth rate σ/ω. In each
frame each bar corresponds to one can. The height of the bar is the amplitude of the acoustic pressure of the thermoacoustic
mode at the flame location, and the cans are ordered from 1 to N = 12 from left to right. The color of the bar is the phase
difference between the pressure in the respective can and the can with the largest amplitude. In this case the system is
symmetric: 1) each eigenmode belongs to one azimuthal order m, appearing in the title of each frame; 2) all modes with an
order that is not multiple of N/2 = 6 come in degenerate pairs, and these two mode shapes may be arbitrarily combined in a
linear fashion

Fig. 7: Two perturbations considered in this paper. In the
Dirac1 case, we decrease from the symmetric case the inter-
action index (the gain) of the flame response in all cans ex-
cept can 1. In the Dirac2 case, we increase from the symmet-
ric case the interaction index (the gain) of the flame response
only in can 1

the sensitivity of the mode shape on a perturbation is small.
In can-annular combustors instead modes appear in clus-

ters occupying a small frequency range. This leads to a
strong sensitivity of the mode shapes to a perturbation, as
discussed by Ghirardo et al. [3] and shown next. In that pa-
per it is discussed how an increase of the flame response in
just one can leads in the linearized system to a strong change
of the mode shapes. In particular Ghirardo et al. found that
in the linearized system one of the eigenmodes has a larger
amplitude in the can with increased flame response. In the
broader physics literature this phenomenon is called mode
localization, and is common for systems undergoing a per-

annular combustors. Notable exceptions include higher order degeneracies,
as in [5, 20–22]

turbation from a symmetric state [7, 23]. This linear result
is consistent with experimental evidence of mode localiza-
tion, as reviewed in the same paper [3]. In the present paper
we discuss if this linear result applies also in the nonlinear
regime, and under which conditions. We leave investigations
of different losses of symmetry, like a can-to-can variation
of the time delays governing the response of the flames, to
future works.

We consider two similar cases in this paper, where only
one can differs from the others. In a first case we decrease
the flame response in all cans except can 1, by dividing the
gains of their flame responses by 10, as presented in Fig. 7.a.
We call this symmetry-breaking configuration Dirac1. We
present in Fig. 8.a the linear stability predictions for this case.
Only one can is linearly unstable if the gaps at the turbine in-
let are closed (blue cross in the positive half plane around ω0)
while all other cans are stable (11 overlapping blue crosses
in the negative half plane around ω0). The whole system
also presents just one eigenmode that is linearly unstable,
the red number four. Notice that in this non-symmetric case
the solutions do not have anymore the structure shown in (2),
and the azimuthal orders presented in the figure are correct
only in an approximate sense3. The shape of the most unsta-
ble eigenmode is presented in Fig. 9.a. We observe that the
shape is strongly non-homogeneous, with a larger amplitude
(bar height) in can 1, where the flame response is larger. As
already discussed in [3], this is an example of mode local-

3the solution is projected on the azimuthal modes of every order, leading
to N/2+1 = 7 projections. The azimuthal order of the projection with the
maximum norm is represented in the Fig.
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Fig. 8: Linear stability analysis for the non-symmetric cases Dirac1 (a) and Dirac2 (b). Same interpretation of Fig. 5 holds.
In a) and b) the result for all the cans not communicating (blue markers) differ for different cans. In particular can 1 has a
stronger flame response than the others and has a higher growth rate (highest blue cross around ω0). in a) only one mode is
linearly unstable, presented in Fig. 9.a. In b) many modes are linearly unstable at the same time, presented in Fig. 10

ization, where the mode is present with larger amplitude in
a smaller region of the domain, in this case in can 1 and its
closest neighbours.

Fig. 9: example of mode localization in the linear and non-
linear regime for the case Dirac1 with the flame switched on.
a) shape of the only unstable linear eigenmode of Fig. 8.a.
b) dominant nonlinear mode shape, obtained from the time
series of the stochastic simulation presented in Fig. 12.a at
the peak frequency. In both a) and b) we observe that the
mode shape has a larger amplitude in can 1, where the flame
response is largest. The larger amplitude decreases moving
away from can 1. The two mode shapes in a) and b) resem-
bles well each other. Same colorbar and interpretation of
Fig. 6 applies to both frames a) and b).

In a second case we increase the flame response only
in can 1, by multiplying the gain of its flame responses by
2, as presented in Fig. 7.b. We call this symmetry-breaking
configuration Dirac2. We present in Fig. 8.b the linear sta-
bility predictions. We observe how the loss of symmetry led
to the splitting of each pair of degenerate azimuthal modes
of the symmetric case of Fig. 5 into two distinct modes. One
mode of the pair stays unchanged and matches the respective
eigenvalue in Fig. 5 of the symmetric case. The other mode
of the pair is instead affected by the symmetry loss. The same
happens in an annular combustor with one damper only [24]
or one burner only [25, §5]. The mode that is unchanged
orients itself with an acoustic pressure node p = 0 in the per-
turbed can 1 at the flame location. In this way the product

qp of fluctuating heat release rate q and acoustic pressure p
contributing over 1 limit cycle to the Rayleigh criterion has
trivially a zero contribution regardless of, and if, the flame in
can 1 is perturbed. The other mode conversely orients itself
with a pressure antinode in can 1 and the perturbation has the
strongest effect on it. We present in Fig. 10 the mode shapes
of the 11 most unstable modes.

We observe that the shape of the most unstable mode
of the two cases Dirac1 and Dirac2, presented respectively
in Fig. 9.a and in the top left frame of Fig. 10, are qualita-
tively very similar. The two non-symmetric cases however
strongly differ in the number of modes being linearly unsta-
ble. In particular the case Dirac1 has only one mode in the
positive half plane of Fig. 8.a, while the case Dirac2 has a
whole cluster of modes in the positive half plane of Fig. 8.b.
This has strong implications in the nonlinear regime, as we
discuss in the next section.

THE NONLINEAR CASE AND THE EFFECT OF
NOISE

In this section we run time domain simulations of the
model and compare them with engine results and linear re-
sults. For running the simulations we need to describe the
response of the flame in the nonlinear regime. We choose
a simple saturation mechanism, and set the nonlinear heat
release rate as

qnl = κarctan(ql/κ) (3)

where ql is the linear response of the flame discussed in the
previous sections, and κ is a saturation constant, which does
not affect the linear response of the heat release rate. This
guarantees that the describing function of the heat release
rate tends to zero at infinity.

To simulate the noisy fluctuations typical of the engine,
we add a stochastic term in each can. This appears as an
additional stochastic flame response that is independent of
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Fig. 10: Linear mode shapes for the Dirac2 case, with the flame response switched on. Same as Fig. 6 but for the first 11 most
unstable eigenmodes of the linear stability analysis of the Dirac2 case of Fig. 8.b. In this case the system is not symmetric,
and each mode belongs to a certain azimuthal order only in an approximate sense. We observe that the mode with the largest
positive growth rate σ/ω = 0.041 (top left frame) has a larger amplitude in can 1, where the flame response is largest. The
larger amplitude decreases moving away from can 1. This is an example of mode localization, and is similar to the most
unstable linear mode of the case Dirac1, presented in Fig. 9.a

the system dynamics. For simplicity, we force the system
with white noise, band-pass filtered around the frequency ω0.
We do so because the model is tuned to be representative of
the engine in the range of frequencies close to ω0.

We present in Fig. 11.a the amplitude spectra of the
acoustic pressures p̂(n)(ω) measured at the flame location as
in Fig. 2 in the 12 modelled cans. For each sensor, the av-
erage amplitude spectra (continuous line) and the maximum
spectra (dashed line) at each frequency are presented. One
can spot how there is more than one peak in the spectrum
of each sensor, approximately at the same frequencies of the
red markers in Fig. 5.

We also consider the alternative representation of the
acoustic field in terms of the azimuthal modes:

pm =
1
N

N

∑
n=1

p(n)eimθn (4)

where θn was defined in (1). Eq. (4) matches, apart for
a multiplicative term, the discrete Fourier transform of the
discrete sequence [p(1), p(2), . . . , p(N)]. Alternatively, the
pm can be interpreted as the complex-valued coefficients of
the Fourier series expansion of the discrete-valued function
p(θn). Eq. (4) holds in time and frequency domain, and
allows to map the state of the system from the space of
the acoustic pressures p(n) in the cans {n = 1,2, . . . ,12} to
the space of the azimuthal modes pm with the azim. order
{m = 0,±1, . . . ,±5,6}. It is always true that the description
of the state of the system in terms of {p(n)} and in terms of
{pm} is equivalent, by means of (4) and its inverse. Only
in the symmetric case it is possible also to state that each
eigenmode has always only one coefficient p̂m](ω) that is
non-zero, where m] is its azimuthal order. In that case, the

quantity |p̂m](ω)| is the amplitude of the eigenmode. In the
non-symmetric case however, one can in principle interpret
{pm} only as a set of coefficients of a Fourier series expan-
sion, without a guarantee that the eigenmodes have neces-
sarily a mode shape that resemble a certain Fourier mode.
Despite this technicality, we will call the pm the azimuthal
modes of the system.

We present in Fig. 11.b the amplitude spectra of the az-
imuthal modes calculated with (4) for the same simulation
of Fig. 11.a. We observe how the maximum spectra of the
azimuthal modes of the cluster follow the same trend of the
growth rates of the respective cluster in Fig. 5. However the
azimuthal mode of order m = 4 is the dominant mode be-
cause the respective average spectra is much larger than the
others.

We then discuss the two non-symmetric cases, and
rescale the intensity of the stochastic source in the same man-
ner of the interaction index, as described in Fig. 7. In the case
Dirac1 this means that we divided by 10 these source terms in
all cans except in can 1. We present in Fig. 12 the calculated
spectra for the Dirac1 case, and observe larger pulsations in
can number 1 and its neighbours. We also identify4 the non-
linear mode shape at the dominant frequency and present it
in Fig. 9.b. There is good agreement between this nonlinear,
identified mode shape with the most unstable linear mode in
Fig. 9.a. This can be interpreted as follows. In the linear
regime only one mode is linearly unstable, which in the non-
linear regime saturates to a limit cycle amplitude. The differ-
ences between the linear and nonlinear mode shapes are due
to nonlinear effects.

We present in Fig. 13 the calculated spectra for the

4how this identification is carried out is discussed in detail in the next
section
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Fig. 11: Spectra for the simulated symmetric case. Amplitude spectra of the acoustic pressure from the timeseries of the
simulation for the symmetric case. a) can space. b) azim. modes space. Dashed lines are the maximum spectra, while
continuous lines are the average spectra

Fig. 12: Spectra for the simulated Dirac1 case. a) acoustic pressure in the cans. b) acoustic pressure in terms of the azim.
modes. Dashed lines are the maximum spectra, while continuous lines are the average spectra

Fig. 13: Spectra for the simulated Dirac2 case. a) acoustic pressure in the cans. b) acoustic pressure in terms of the azim.
modes. Dashed lines are the maximum spectra, while continuous lines are the average spectra

Dirac2 case, and identify in Fig. 14 the nonlinear mode shape
at the two dominant frequencies of Fig. 13.a. The two non-
linear mode shapes do not resemble any of the linear mode
shapes of Fig. 10. This can be interpreted as follows. In the
linear and nonlinear regime many modes are unstable. The
nonlinear mode shape is, in a weakly nonlinear sense, a lin-

ear combination of all unstable modes. Secondly, the shape
of these modes is sensitive to perturbations, which arise nat-
urally from the nonlinearities of the problem, and the mean
mode shape is the result of all the modes competing with
each other, subject to the background noise.

We also notice that the increased flame response in can
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2

Fig. 14: We present in a) and b) the identified nonlinear
mode shape estimated from the time-series of the Dirac2 case
with the flame response switched on, at a fixed frequency. In
particular a) and b) correspond each to the two highest peaks
in Fig. 13.a at frequencies ω1 and ω2, with ω1 the smallest
frequency of the two. Neither of the two identified nonlinear
mode shapes presented here resemble any of the linear mode
shapes presented in Fig. 10

1 does not lead to a noticeable local increase of the pulsa-
tion amplitude, and to a modest increase of the overall pulsa-
tion level (compare Fig. 13.a and Fig. 11.a). In fact, despite
the fact that the linear flame response in can 1 is twice as
large, its nonlinearly saturated counterpart is less than twice
as large as in the other cans at the limit-cycle amplitude be-
cause of the saturation (3). This means that the symmetry-
breaking is weaker in the nonlinear regime than in the lin-
ear regime, because we kept the flame saturation the same
in all cans. In this paragraph we then further investigate the
effect of the nonlinearity on the solution. In general, the sat-
uration of the flame response depends often on u′/U , where
u′ is the acoustic velocity at a reference cross section close
to the flame and U is the mean bulk velocity on the same
cross-section. It is also often the case that stronger flame
responses in the linear regime saturate to higher amplitudes
u′/U , see e.g. [26], but this is not a general rule. Under this
assumption, we study what happens to the Dirac2 case if we
make the flame in can 1 stronger also in the nonlinear regime,
by multiplying κ in (3) by 2. For reasons of brevity, we do
not present the spectra of this case, but just the identified
mode shapes of the two dominant peaks in Fig. 15. The two
peaks occur at the same two frequencies of the Dirac2 case
of Fig. 13. We observe that this leads to a larger loss of ro-
tational symmetry of the system as compared to the baseline
Dirac2 case of Fig. 14, and also to a higher pulsation ampli-
tude in can 1.

We then present in Fig. 16 the spectra from a can-
annular engine with 12 cans. The sensors in this case are not
at the same position of the model, but in the same relative
position in each can, so that the symmetry of the system is
preserved also in the observations. We observe a good agree-
ment with the simplified model, both in terms of the shape of
the spectra of the cans, frequency spacing between the az-
imuthal modes, trends as function of frequency and ratio be-
tween maximum spectra (dashed lines) and average spectra
(continuous lines).

PREDICTION OF COHERENCE PATTERNS
For the derivation of the following theoretical results,

the flames are assumed to act as stochastic monopole

2

Fig. 15: Same as Fig. 14 but after rescaling the nonlinear
saturation constant κ. The two frequencies ω1 and ω2 of the
two highest peaks do not change with the rescaling of κ. The
two patterns in a) and b) are similar to the two patterns of
Fig. 14, but the higher amplitude in can 1 is now more pro-
nounced, with a stronger departure of the pulsation pattern
from the symmetric baseline, which is characterized by all
bars at the same height

sources, to be uncorrelated among the different cans, and to
have the same spectral power density. The following rela-
tions are also derived considering the system is linear. This
is a fair assumption to make in those cases when the system
is linearly stable and the level of background noise is suffi-
ciently low to not push the system in the nonlinear regime,
so that the linearized system is representative of the system
dynamics.

Let p j be the acoustic pressure measured in the j-th can.
The coherence between the acoustic pressure measured in
cans i and j is defined as:

Ci j(ω)≡
E[p̂i(ω)p̂ j(ω)

∗]√
E[|p̂i(ω)|2]E[|p̂i(ω)|2]

(5)

where the asterisk denotes complex conjugation, and
E[p̂i(ω)p̂ j(ω)

∗] is the cross-spectral density at frequency ω

between the signal pi(t) and the signal p j(t). In the sym-
metric case, the spectral amplitudes |p̂i| appearing in the de-
nominator are the same in all cans. Assuming the system is
ergodic and stationary, the expected values can be estimated
by means of time averages:

Ci j =
p̂i(ω)p̂ j(ω)∗√
|p̂i(ω)|2 · |p̂ j(ω)|2

(6)

where the overbar denotes a time average over a sufficiently
long observation window. The coherence can be calculated
applying (6) to time simulations or engine measurements,
and can be predicted using (5) from the model, as we dis-
cuss next.

From the model in Fig. 2, we can calculate the lin-
ear transfer function G between the N flame sources sss ≡
[s1, . . . ,sN ] placed at the flame positions xxxf and the acoustic
pressures ppp≡ [p1, . . . , pN ] at the flame position:

p̂pp = GGG(ω)ŝss (7)

In (7) the operator GGG(ω) is the Green function GGGf(xxx,ω) eval-
uated at the flame position, i.e. GGG(ω)≡GGGf(xxxf,ω). If the sys-
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Fig. 16: Spectra for an engine measurement. Amplitude spectra of the acoustic pressure from engine data. a) can space. b)
azim. modes space. Dashed lines are the maximum spectra, while continuous lines are the average spectra

tem exhibits discrete rotational symmetry, GGG is circulant. We
can calculate next

p̂ppp̂ppH = GGGŝss(GGGŝss)H = GGGŝssŝssHGGGH (8)

where we neglect to write the explicit dependence on ω of all
terms for convenience, and pppH denotes the Hermitian conju-
gate of ppp. Because the noise sources are uncorrelated, we
have that E[ŝssŝssH ] = ŝ2III, where III is the identity matrix of size
N, and ŝ2 is the scalar noise power. The expected value of
(8) simplifies to

E[p̂ppp̂ppH ] = GGGGGGH ŝ2 (9)

The (i, j)-th element of (9) appears at the numerator of
(5). Exploiting the symmetry, one can express the expected
power E[|p̂i(ω)|2] appearing at the denominator of (5) as

E[|p̂i(ω)|2] = E[p̂i(ω)p̂i(ω)
∗] =

1
N

N

∑
i=1

E[p̂i(ω)p̂i(ω)
∗]

(10)

=
1
N

E[pppH ppp] (11)

Similarly we can calculate

p̂ppH p̂pp = (GGGŝss)HGGGŝss = ŝssHGGGHGGGŝss (12)

By taking the expected value of (12) we obtain

E
[
p̂ppH p̂pp

]
= s2 |GGG|2 (13)

where |GGG| is the Frobenius norm of GGG (square root of the
summed magnitude-squared elements). Finally, substituting
(13) into (10) and (10) and (9) into (5) we obtain

CCC = N
GGGGGGH

|GGG|2
(14)

We make use of (14) to predict the coherence pattern of the
symmetric case with the flame response switched off. We
present in Fig. 17 the pattern at the frequency of the modes
of azimuthal order m = 0,3,6 in the black cluster close to ω0
of Fig. 5, in terms of phase (angle of Ci j) and magnitude (ab-
solute value of Ci j). In each of the three frames, each of the
12× 12 = 144 squares represent a result between two sen-
sors. Each square belonging to the top left triangular grid at
position (i, j) represents the phase of Ci j, i.e. the phase differ-
ence between pi and p j. The same phase result for the square
at position ( j, i), which is the symmetric of (i, j), on the other
side of the white diagonal, is not presented because it is triv-
ially C ji = −Ci j. Each square belonging to the bottom right
triangular grid at position (i, j) presents instead the magni-
tude of the coherence. We focus for example on the first
frame of Fig. 17, which was obtained at the frequency of the
axial mode m = 0. Despite the frequency exactly matching
the axial mode frequency, the phase pattern between cans is
very different from the phase pattern typical of an axial mode
(phase of zero between all pairs of cans). This happens be-
cause the other modes are very close in frequency to the axial
mode, and then they also contribute significantly to this lin-
ear response. Similar observations can be made regarding
the other two frames.

We can compare this with the engine result of Fig. 18,
obtained using (6) on the timeseries presented in Fig. 16. In
particular the coherence matrix (6) is evaluated at the fre-
quency of the peaks of the modes of order m = 0,3,6 in
Fig. 16.b. The comparison shows good qualitative agree-
ment in terms of the coherence, despite violating the linear
hypothesis of the prediction. The match in terms of phase
difference is similar only for the push-pull mode (m = 6) in
the third frame, while it is quite different for the other two
frames. This does not come as a surprise. In fact, in Fig. 18
we observe the modal response of the system, which we de-
scribe next. In the first frame of Fig. 18 the phase pattern is
mostly zero, as is typical for an axial mode. In the second
frame we can observe three banded diagonal stripes of phase
close to zero (light blue) and π (red), which is a pattern for a
standing solution with fixed nodes in space. Finally, the third
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frame shows a typical push-pull pattern, where the alternat-
ing light blue/red pattern shows the jump in phase of π from
one can to the next. The three frames can also be ordered by
increasing level of clarity of the pattern from the first (left)
to the third frame (right). This corresponds to the increas-
ing dominance of the respective modes of order m = 0,3,6
at their peak frequency in Fig. 16.b as compared to the other
modes.

When considering the differences between Figs. 17 and
18, we stress that Fig. 17 captures the whole system (lin-
ear and stable) response to the excitation of the background
noise, while Fig. 18 captures the modal response of the dom-
inant mode of the system (nonlinear and unstable) subject to
background noise.

CONCLUSIONS
We discuss a model for low-frequency thermoacoustics

in can-annular combustors. Because of the approximate rota-
tional symmetry of the system and the weak coupling occur-
ring at the turbine inlet between adjacent cans, thermoacous-
tic modes appear in clusters. Each cluster contains modes
of azimuthal order m = 0,±1,±2,N/2 for a can combus-
tor with an even number N of cans. Each mode is axial in
the main body of the can and azimuthal at the turbine in-
let. The frequency spacing of the cluster, i.e. how tightly
packed together are the modes of the cluster, is governed by
the strength of the can-to-can coupling, which depends on an
effective gap length Lgap at the turbine inlet, as presented in
Fig. 1. As the gap becomes smaller, in each cluster the fre-
quencies of the modes approach the frequency of the axial
mode, which remains unchanged.

When one considers the effect of the flame on the sys-
tem, we observe that usually all the modes of a cluster be-
come unstable together at a given frequency, as exemplified
in Fig. 5. The linear stability analysis cannot then in princi-
ple predict which eigenmode will take over in the nonlinear
regime. To overcome this problem, we run stochastic dynam-
ical simulations of the system. The results of the simulations
are studied in terms of average and maximum spectra, and
compared with engine measurements. Shapes of the spectra,
spacing of the peaks within a cluster, and the ratio between
maximum and average spectra show good agreement with
the tuned model.

A pattern where the flame response of one can is in-
creased is investigated. If this stronger flame in one can leads
to only one unstable mode (case Dirac1), we observe mode
localization in the nonlinear numerical simulations, as dis-
cussed in previous work based on linear analyses and exper-
imental observations [3]. This mode localization consists in
an increased pulsation amplitude in one can and its closest
neighbours as compared to the other cans. If instead many
modes are unstable at the same time (case Dirac2), this mode
localization is present in the linear analysis of the system, but
may or may not appear in the nonlinear regime as function of
the saturated state of the system in the nonlinear regime. We
have observed for two cases how the nonlinear mode shape
is completely different from the shapes of the linear eigen-

modes. This shows that dynamical simulations of the system
are needed to be predictive on the nonlinear state of the sys-
tem.

Finally, we considered the dynamics of a stable ther-
moacoustic mode excited by background noise. Assuming
a linear system, the coherence and the phase between cans
is predicted. This is compared with estimates of the same
quantity on the nonlinear unstable modes of the engine mea-
surements. Despite the fact that the system is unstable and
nonlinear, we find good qualitative agreement in terms of the
magnitude of the coherence between cans, and some agree-
ment in terms of the phase between cans.
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