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ABSTRACT
Can-annular combustors consist of N distinct cans set up

symmetrically around the axis of the gas turbine rotor. Each can
is connected to the turbine inlet by means of a transition duct.
At the turbine inlet a small gap between the neighbouring transi-
tion ducts allows acoustic communication between the individual
cans. Thermoacoustic pulsations in the cans are driven by the re-
spective flames, but also the communication between neighbour-
ing cans through the gap plays a significant role. In this study
we focus in particular on the effect of the background noise in-
tensity and of the nonlinear flame saturation. We predict how
usually clusters of thermoacoustic modes are unstable in the lin-
ear regime and compete with each other in the nonlinear regime,
with each cluster consisting of axial, azimuthal and push-pull
modes. Since linear theory cannot predict the nonlinear solution,
stochastic simulations are run to study the non-linear solution in
a probabilistic sense. One outcome of these simulations are the
various pulsation patterns, which are in principle different from
one can to the next. This is done for several configurations, with
a focus on the effect of a loss of rotational symmetry of the sys-
tem. We recover how a stronger flame response in one can give
rise to the phenomenon of mode localization, but also how the
nonlinearity of the flame saturation and the competition between
modes have an effect on the nonlinear average mode shape. We
finally predict the coherence and phase pattern between cans on
the linearized system subject to stochastic noise, and compare
the predictions with direct engine measurements, both in terms
of spectra of pulsation amplitude in each can and coherence and
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phase between different cans, observing a good match.

INTRODUCTION
Can-annular combustors are common in heavy-duty land

based gas turbines [1, 2]. In this design the air flows from the
compressor outlet to the combustor plenum, where the air stream
splits into N cans. In each can the fuel is injected with one or
more fuel injectors, downstream of which one or more combus-
tion zones are formed [2]. After the last combustion zone, the
hot gas flows into the turbine inlet. Since the can cross section
is circular and the inlet of the turbine is an annular gap, a special
transition duct is designed to suitably link the two, as sketched in
Fig. 1.

Due to the flame response to acoustic waves, a positive feed-
back loop can form between the acoustics of the combustion
chamber and the flames, leading to self-excited thermoacoustic
oscillations [4]. On a qualitative level, acoustic and thermoa-
coustic modes in can-annular and in annular systems share some
similarity. This is because both configurations nominally fea-
ture discrete rotational symmetry. In this ideal symmetric case,
most of the acoustic and thermoacoustic modes are degenerate,
i.e., they have an additional degree of freedom with respect to
their specific space–time structure (standing vs. spinning, nodal
line orientation). However, the modal structure significantly dif-
fers. While in an annular combustor the lower-frequency modes
are usually sufficiently spaced apart so that their interaction is
not essential (exceptions exist in special cases [5]), can-annular
systems generically exhibit clusters of closely spaced eigenval-
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(a) 3D sketch of a transition duct (b) Front view of the air volume (c) Side view of the air volume

FIGURE 1: Geometry of a typical transition duct and the simplifications leading to the 2D model discussed by [3]. The communicating
gap between two adjacent transition ducts is colored in gray, with an axial length Lgap. At the turbine inlet, each transition duct covers
a span H in the azimuthal direction. The nondimensional number governing the strength of the communication between the cans is
Lgap/H. Figures from [3]

ues [3]. This feature can be attributed to the special structure of a
can-annular combustor with its weakly coupled, nominally iden-
tical subsystems (the cans). It is known from structural vibration
theory that such systems exhibit sets of closely spaced eigen-
values [6]. This spectral structure makes these systems highly
sensitive to parametric perturbations and may give rise to the
formation of localized modes if the nominal symmetry is per-
turbed [7]. It was shown in the recent work of Ghirardo et al. [3]
that this may indeed be observed for thermoacoustic modes in
can-annular systems with perturbed symmetry.

Recent work of Farisco, Panek et al. [8,9,10] studies in par-
ticular the acoustic communication between adjacent cans at the
turbine inlet. The work of Ghirardo et al. [3], presented one
year ago at the ASME Turbo EXPO 2018 in Oslo, focused es-
pecially on the acoustic response of transition ducts. Thermoa-
coustic dynamics in real engines are subject to significant levels
of background noise, which perturb the system in a stochastic
way [11, 12, 13]. The effect of noise on the thermoacoustics of
can-annular systems has not been considered yet.

In the present work, a qualitative model consisting also of
a set of cans is discussed, with a focus on the dynamics of the
whole system. We present a comparison between model and
engine measurements, highlighting the effect of the background
noise on the system dynamics. We tackle the problem by in-
creasing the level of complexity from one section to the next.
We consider first in the linear regime both the symmetric case
and the non-symmetric case, discussing some new results on the
sensitivity of the acoustics of can-annular systems. We then dis-
cuss the nonlinear case and the effect of noise, and compare this
to engine data.

can

can model transition duct model

pulsation
sensor

FIGURE 2: Sketch of one can and respective transition duct.
The full model consists of N blocks like this one, connected at
the turbine inlet where the acoustic waves f and g travel through
the two gaps drawn in blue on the right, with gap length Lgap as
presented in Fig. 1. Z(nq) is the N×N impedance of the set of
N transition ducts, with inputs the N acoustic velocities u(q) and
output the N acoustic pressures p(n). On the upstream end of the
transition ducts, these are related by the can admittance A(n)

THE MODEL
The acoustic modelling of a set of N transition ducts com-

municating at the turbine inlet was discussed by [3], and only a
brief description follows here. The model depends on three char-
acteristic lengths reported in Fig. 1: the length L of the transition
duct, the span H at the turbine inlet, and the length Lgap of the
gap between adjacent cans, often referred to as cross-talk area.
Full acoustic reflection at the turbine inlet is assumed because
the flow is close to choked [14], and entropy waves’ reflection
and mean flow effects are neglected. We also focus on acoustic
frequencies below the cut-on frequency of the duct, so that all
modes considered are axial at the upstream end of the transition

2 Copyright c© 2019 by ASME



ducts and that a truncated series expansion of the Green function
of the wave equation can be used efficiently to model the acous-
tic response of the set of transition ducts [15]. Because the mean
azimuthal velocity Uθ just upstream of the turbine inlet is usually
very small in can-annular combustors, we set it to zero. Under
these assumptions the set of transition ducts is not just rotation-
ally symmetric, but also reflection symmetric. This will affect
the spectrum of the problem in the next section.

The full model accounts also for the N cans, each connected
upstream of each transition duct as in Fig. 2. In particular, each
can consists of a straight duct closed on the upstream end, a
burner element that accounts for an area contraction and expan-
sion, a flame and the transition duct. The area contraction and
burner are modelled by means of an L-ζ model, which accounts
for local acoustic damping occurring because of the pressure
drop [16].

THE LINEAR SYMMETRIC CASE
Can-annular combustors are only to a first approximation

rotationally symmetric, with each can not exactly the same as the
other. This can occur for example because of small geometrical
differences in the hardware leading to different mass flow rates
between cans, azimuthal inhomogeneities in the air intake from
the compressor into the combustor plenum, and inhomogeneities
in the fuel distribution to each can. It is however useful to study
the real-world, rotationally non-symmetric case as a perturbation
of the symmetric case, which is discussed in this section.

We consider N = 12 identical cans, with the n-th can at the
azimuthal position

θn = 2πn/N n = 1,2, . . . ,12 (1)

When the system is symmetric, Bloch wave theory guarantees
that the mode shapes in the frequency domain can be written
as [17, 18]:

p̂(xxx) = ψ(xxx)eimθ , m =−N/2+1, . . . ,0,1, . . . ,N/2 (2)

In (2), xxx denotes a point in the three-dimensional space, which
in cylindrical coordinates corresponds to (r,θ ,z), where the az-
imuthal coordinate θ goes from 0 to 2π . The function ψ(xxx) is
periodic in θ with a period 2π/N, and describes the near-field
solution. The solution p in all the cans is the near-field solution
ψ modulated by the complex exponential eimθ , and except for
m = 0 it is periodic in θ with period 2π/m. For completeness,
for m = 0 the solution p in (2) matches ψ and is periodic in θ

with period 2π/N. By direct substitution into (2) we observe
that

• m = 0 corresponds to an axial mode, with the same ampli-
tude and mode shape in each can.

• m = N/2 corresponds to a push-pull mode, with the same
amplitude and mode shape in each can but opposite sign
(each can is in anti-phase with its neighbours)
• other cases like m =±n correspond to a rotating azimuthal
wave of order n in the clockwise/anticlockwise direction

For this reason, we call m in (2) the azimuthal order of the so-
lution, and we can classify all the solutions by their azimuthal
order. We next consider the dependence of the eigenfrequencies
of the system as function of the geometry, respectively the can
length Lcan and the gap length Lgap.

FIGURE 3: Sensitivity of the purely acoustic frequencies of the
system to the can length Lcan described in Fig. 2. Each row of
symbols corresponds to a stability analysis for a fixed value of
Lcan with the effect of the flame response switched off. We ob-
serve how modes appear in clusters, highlighted with blue boxes
for the largest considered value of Lcan. In each cluster there are
modes with azimuthal order m varying from m = 0 to m = 6, as
discussed after (2). The baseline case considered in the rest of
the paper is reported with empty markers. Fig. 4 zooms in on
the baseline cluster between vertical black lines and considers a
different sensitivity

We calculate the frequencies and the growth rates of the sys-
tem by means of a linear stability analysis for discrete values
of Lcan, while keeping Lgap constant. In Fig. 3 for each discrete
value of Lcan the frequencies are reported on the horizontal axis,
with the azimuthal order of the respective mode shape appearing
in the legend. In Fig. 3 and the following all angular frequencies
have been normalized by dividing them by ω0, which was cho-
sen to have all frequencies of interest in the range between 0 and
3ω0/2.

Because of the reflection symmetry of the system the eigen-
values of the azimuthal mode of order +n and of the azimuthal
mode of order−n perfectly overlap and are degenerate. For sim-
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plicity, we report them simply as modes of order n in Fig. 3 and
in the following. In Fig. 3 for a fixed value of Lcan the markers
appear in clusters that are close in frequency. In each cluster the
mode at the lowest frequency is the axial mode, and the mode at
the highest frequency is the push-pull mode. The visible clusters
correspond to the first few axial modes of a single can system,
which match the axial solution presented with a black triangle.
For a fixed Lcan the clusters are more compact as frequency in-
creases, i.e. the 12 modes1 in each cluster are closer together
the larger is the frequency of the cluster. We observe that also
in can-annular systems a longer length leads to a decrease of the
frequency of the respective mode, as is typical of the axial modes
in a one-dimensional duct as function of the duct length. In the
following we fix Lcan to a constant baseline value, for which the
respective markers in Fig. 3 are empty.

FIGURE 4: Sensitivity of one of the clusters of Fig. 3 to the
gap length Lgap between cans described in Fig. 1. Each row of
symbols corresponds to a different value of Lgap and is obtained
with the effect of the flame response switched off. The frequency
of the axial m = 0 mode is unaffected by Lgap, and smaller values
of Lgap lead to a narrower cluster. In the limit Lgap → 0 all the
eigenvalues of the cluster collapse on the axial mode, and each
can oscillates by itself without interaction with the others. The
baseline case considered in the rest of the paper is reported with
empty markers, and coincides with the empty markers’ cluster
between vertical black lines in Fig. 3

To study the sensitivity on Lgap, we zoom in on one cluster
of the baseline case, in the frequency range in Fig. 3 between
the two vertical black lines. The same cluster with empty mark-
ers appears in Fig. 4 for the baseline value of Lgap. We zoom

1to these N = 12 modes correspond only (N+1)/2 = 7 markers in the figure.
This is because 5 modes are degenerate and are presented with the same marker,
and 2 modes (m = 0,6) are not degenerate, for a total of 7 visible markers

in on one cluster because the gap length Lgap acts on each clus-
ter of eigenmodes: in Fig. 4 the smaller the gap the closer are
the frequencies of the cluster. In particular we observe that the
frequency of the axial mode does not depend on Lgap, while the
higher the azimuthal order of the mode m, the more its frequency
departs from the axial frequency. We also observe that in the
limit of Lgap → 0 the frequencies of all the other modes of the
cluster seem to tend to the frequency of the axial mode. Physi-
cally, this happens because in the limit of Lgap → 0 the cans are
not anymore communicating, and this would appear as N = 12
eigenmodes at the same exact eigenvalue, each with a localized
mode shape in each can.

FIGURE 5: Linear stability analysis for the symmetric case. Each
marker/number is the eigenvalue of one thermoacoustic mode.
The horizontal axis is the real part of the eigenvalue, the fre-
quency in Hz of the mode. The vertical axis is the real part σ of
the eigenvalue divided by the imaginary part ω , i.e. the nondi-
mensional growth rate σ/ω . Positive values of σ correspond to
linearly unstable thermoacoustic modes whose amplitude grows
with time in the linear regime, while negative values correspond
to stable modes whose amplitude diminishes in time, which are
predicted to not be measured in a time domain simulation and in
a test. The black markers correspond to the case when the effect
of the flame response is switched off in the model and are all sta-
ble. When the flame response is switched on (red markers) some
of these modes jump in the upper half plane and become unsta-
ble. The shapes of the most unstable modes for the case with
the flame on are presented in Fig. 6. We present also with blue
markers the prediction for the system when the gap is completely
closed, with and without flame

We present in Fig. 5 the predicted linear stability of the
system in terms of frequencies and growth rates, first with the
flame response switched off in all cans (black numbers) and then
switched on (red numbers). Instead of presenting each eigen-
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FIGURE 6: Mode shapes of the symmetric case, with the flame response switched on, for the first 11 most unstable eigenmodes of the
linear stability analysis with the flame on (red markers in Fig. 5). Each frame corresponds to an eigenmode, and the frames are ordered
from left to right and top to bottom by decreasing value of the nondimensional growth rate σ/ω . In each frame each bar corresponds
to one can. The height of the bar is the amplitude of the acoustic pressure of the thermoacoustic mode at the flame location, and the
cans are ordered from 1 to N = 12 from left to right. The color of the bar is the phase difference between the pressure in the respective
can and the can with the largest amplitude. In this case the system is symmetric: 1) each eigenmode belongs to one azimuthal order m,
appearing in the title of each frame; 2) all modes with an order that is not multiple of N/2 = 6 come in degenerate pairs, and these two
mode shapes may be arbitrarily combined in a linear fashion

value with a marker, we plot at the same position the integer of
the respective azimuthal order m of the mode. The frequencies ω

of the case without flame match the frequencies presented for the
baseline case in Figs. 3 and 4, except for the cluster at the lowest
frequency that is too damped to appear in Fig. 5. In the same
figure we also present in blue the result obtained if we close all
the gaps at the turbine inlet. In this symmetric case all cans are
the same and their eigenvalues overlap exactly on the same blue
markers and on the axial modes.

The respective mode shapes of the case with flame are pre-
sented in Fig. 6. We do not present the full spatial structure, but
just the amplitude (height of the bars) and phase (color of the
bars) of the acoustic pressure at the flame location in each can.
For the modes with low azimuthal order m = 1,2 it is possible
to distinguish by eye their azimuthal nature by just following the
envelope of the amplitude of the mode along the annulus. We
observe however that for m ≥ 3, for a number of cans equal to
N = 12 it is difficult to tell by eye the azimuthal order of the
mode, because the wavelength is not much larger than the can
spacing. For this specific case the most unstable mode is a push-
pull mode at a frequency slightly larger than ω0, but we also find
that the whole cluster of eigenmodes close to ω0 is unstable. It is
then not possible, based only on the results of the linear stability
analysis, to draw conclusions on the state of the system in the

nonlinear regime.

FIGURE 7: Two perturbations considered in this paper. In the
Dirac1 case, we decrease from the symmetric case the interac-
tion index (the gain) of the flame response in all cans except can
1. In the Dirac2 case, we increase from the symmetric case the
interaction index (the gain) of the flame response only in can 1

THE LINEAR NON-SYMMETRIC CASE
In this section we perturb the rotational symmetry of the sys-

tem, and consider an asymmetry in the flame response. An actual
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asymmetry, for example, the burner geometry, pressure loss or
fuel injection, will generally affect both gain and phase (or time
delay) of the flame response. Here, we only consider can-to-can
variations in the gain and find that they reproduce the experimen-
tal observations.

Discussing a general loss of rotational symmetry of the
flame response has already been done in the past in thermoa-
coustics. One analytic approach to the problem consists to use as
ansatz the mode shape of the symmetric problem. The governing
equations of the non-symmetric problem are then projected on
this ansatz, and linear sensitivities of the eigenvalue are calcu-
lated [19]. This procedure assumes that the change of the shape
of the mode of interest due to the loss of symmetry is negligible.
This usually holds for azimuthal instabilities in annular combus-
tors because there are no other modes that are close to the degen-
erate mode of interest2 and the sensitivity of the mode shape on
a perturbation is small.

In can-annular combustors instead modes appear in clusters
occupying a small frequency range. This leads to a strong sen-
sitivity of the mode shapes to a perturbation, as discussed by
Ghirardo et al. [3] and shown next. In that paper it is discussed
how an increase of the flame response in just one can leads in
the linearized system to a strong change of the mode shapes.
In particular Ghirardo et al. found that in the linearized system
one of the eigenmodes has a larger amplitude in the can with in-
creased flame response. In the broader physics literature this phe-
nomenon is called mode localization, and is common for systems
undergoing a perturbation from a symmetric state [7, 23]. This
linear result is consistent with experimental evidence of mode
localization, as reviewed in the same paper [3]. In the present
paper we discuss if this linear result applies also in the nonlin-
ear regime, and under which conditions. We leave investigations
of different losses of symmetry, like a can-to-can variation of
the time delays governing the response of the flames, to future
works.

We consider two similar cases in this paper, where only one
can differs from the others. In a first case we decrease the flame
response in all cans except can 1, by dividing the gains of their
flame responses by 10, as presented in Fig. 7.a. We call this
symmetry-breaking configuration Dirac1. We present in Fig. 8.a
the linear stability predictions for this case. Only one can is lin-
early unstable if the gaps at the turbine inlet are closed (blue cross
in the positive half plane around ω0) while all other cans are sta-
ble (11 overlapping blue crosses in the negative half plane around
ω0). The whole system also presents just one eigenmode that is
linearly unstable, the red number four. Notice that in this non-

2indeed, annular combustors have azimuthal modes whose frequencies in a
first approximation scale like fn = nc/πD n = 1,2 . . ., where c is the speed of
sound and D is the diameter of the combustion chamber. It is clear from this
expression that these modes are far from each other with a frequency spacing of
c/πD and do not form a cluster as modes in can-annular combustors. Notable
exceptions include higher order degeneracies, as in [5, 20, 21, 22]

symmetric case the solutions do not have anymore the structure
shown in (2), and the azimuthal orders presented in the figure are
correct only in an approximate sense3. The shape of the most
unstable eigenmode is presented in Fig. 9.a. We observe that the
shape is strongly non-homogeneous, with a larger amplitude (bar
height) in can 1, where the flame response is larger. As already
discussed in [3], this is an example of mode localization, where
the mode is present with larger amplitude in a smaller region of
the domain, in this case in can 1 and its closest neighbours.

In a second case we increase the flame response only in can
1, by multiplying the gain of its flame responses by 2, as pre-
sented in Fig. 7.b. We call this symmetry-breaking configuration
Dirac2. We present in Fig. 8.b the linear stability predictions. We
observe how the loss of symmetry led to the splitting of each pair
of degenerate azimuthal modes of the symmetric case of Fig. 5
into two distinct modes. One mode of the pair stays unchanged
and matches the respective eigenvalue in Fig. 5 of the symmetric
case. The other mode of the pair is instead affected by the sym-
metry loss. The same happens in an annular combustor with one
damper only [24] or one burner only [25, §5]. The mode that is
unchanged orients itself with an acoustic pressure node p = 0 in
the perturbed can 1 at the flame location. In this way the product
qp of fluctuating heat release rate q and acoustic pressure p con-
tributing over 1 limit cycle to the Rayleigh criterion has trivially
a zero contribution regardless of, and if, the flame in can 1 is per-
turbed. The other mode conversely orients itself with a pressure
antinode in can 1 and the perturbation has the strongest effect on
it. We present in Fig. 10 the mode shapes of the 11 most unstable
modes.

We observe that the shape of the most unstable mode of the
two cases Dirac1 and Dirac2, presented respectively in Fig. 9.a
and in the top left frame of Fig. 10, are qualitatively very simi-
lar. The two non-symmetric cases however strongly differ in the
number of modes being linearly unstable. In particular the case
Dirac1 has only one mode in the positive half plane of Fig. 8.a,
while the case Dirac2 has a whole cluster of modes in the pos-
itive half plane of Fig. 8.b. This has strong implications in the
nonlinear regime, as we discuss in the next section.

THE NONLINEAR CASE AND THE EFFECT OF NOISE
In this section we run time domain simulations of the model

and compare them with engine results and linear results. For
running the simulations we need to describe the response of the
flame in the nonlinear regime. We choose a simple saturation
mechanism, and set the nonlinear heat release rate as

qnl = κ arctan(ql/κ) (3)

3the solution is projected on the azimuthal modes of every order, leading to
N/2+ 1 = 7 projections. The azimuthal order of the projection with the maxi-
mum norm is represented in the Fig.
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FIGURE 8: Linear stability analysis for the non-symmetric cases Dirac1 (a) and Dirac2 (b). Same interpretation of Fig. 5 holds. In a)
and b) the result for all the cans not communicating (blue markers) differ for different cans. In particular can 1 has a stronger flame
response than the others and has a higher growth rate (highest blue cross around ω0). in a) only one mode is linearly unstable, presented
in Fig. 9.a. In b) many modes are linearly unstable at the same time, presented in Fig. 10

FIGURE 9: example of mode localization in the linear and non-
linear regime for the case Dirac1 with the flame switched on.
a) shape of the only unstable linear eigenmode of Fig. 8.a. b)
dominant nonlinear mode shape, obtained from the time series
of the stochastic simulation presented in Fig. 12.a at the peak
frequency. In both a) and b) we observe that the mode shape has
a larger amplitude in can 1, where the flame response is largest.
The larger amplitude decreases moving away from can 1. The
two mode shapes in a) and b) resembles well each other. Same
colorbar and interpretation of Fig. 6 applies to both frames a) and
b).

where ql is the linear response of the flame discussed in the previ-
ous sections, and κ is a saturation constant, which does not affect
the linear response of the heat release rate. This guarantees that
the describing function of the heat release rate tends to zero at
infinity.

To simulate the noisy fluctuations typical of the engine, we
add a stochastic term in each can. This appears as an additional
stochastic flame response that is independent of the system dy-
namics. For simplicity, we force the system with white noise,
band-pass filtered around the frequency ω0. We do so because
the model is tuned to be representative of the engine in the range
of frequencies close to ω0.

We present in Fig. 11.a the amplitude spectra of the acoustic
pressures p̂(n)(ω) measured at the flame location as in Fig. 2 in
the 12 modelled cans. For each sensor, the average amplitude
spectra (continuous line) and the maximum spectra (dashed line)
at each frequency are presented. One can spot how there is more
than one peak in the spectrum of each sensor, approximately at
the same frequencies of the red markers in Fig. 5.

We also consider the alternative representation of the acous-
tic field in terms of the azimuthal modes:

pm =
1
N

N

∑
n=1

p(n)eimθn (4)

where θn was defined in (1). Eq. (4) matches, apart for a multi-
plicative term, the discrete Fourier transform of the discrete se-
quence [p(1), p(2), . . . , p(N)]. Alternatively, the pm can be inter-
preted as the complex-valued coefficients of the Fourier series
expansion of the discrete-valued function p(θn). Eq. (4) holds
in time and frequency domain, and allows to map the state of
the system from the space of the acoustic pressures p(n) in the
cans {n = 1,2, . . . ,12} to the space of the azimuthal modes pm
with the azim. order {m = 0,±1, . . . ,±5,6}. It is always true
that the description of the state of the system in terms of {p(n)}
and in terms of {pm} is equivalent, by means of (4) and its in-
verse. Only in the symmetric case it is possible also to state
that each eigenmode has always only one coefficient p̂m](ω) that
is non-zero, where m] is its azimuthal order. In that case, the
quantity |p̂m](ω)| is the amplitude of the eigenmode. In the non-
symmetric case however, one can in principle interpret {pm} only
as a set of coefficients of a Fourier series expansion, without a
guarantee that the eigenmodes have necessarily a mode shape
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FIGURE 10: Linear mode shapes for the Dirac2 case, with the flame response switched on. Same as Fig. 6 but for the first 11 most
unstable eigenmodes of the linear stability analysis of the Dirac2 case of Fig. 8.b. In this case the system is not symmetric, and each
mode belongs to a certain azimuthal order only in an approximate sense. We observe that the mode with the largest positive growth
rate σ/ω = 0.041 (top left frame) has a larger amplitude in can 1, where the flame response is largest. The larger amplitude decreases
moving away from can 1. This is an example of mode localization, and is similar to the most unstable linear mode of the case Dirac1,
presented in Fig. 9.a

that resemble a certain Fourier mode. Despite this technicality,
we will call the pm the azimuthal modes of the system.

We present in Fig. 11.b the amplitude spectra of the az-
imuthal modes calculated with (4) for the same simulation of
Fig. 11.a. We observe how the maximum spectra of the azimuthal
modes of the cluster follow the same trend of the growth rates of
the respective cluster in Fig. 5. However the azimuthal mode of
order m= 4 is the dominant mode because the respective average
spectra is much larger than the others.

We then discuss the two non-symmetric cases, and rescale
the intensity of the stochastic source in the same manner of the
interaction index, as described in Fig. 7. In the case Dirac1 this
means that we divided by 10 these source terms in all cans ex-
cept in can 1. We present in Fig. 12 the calculated spectra for
the Dirac1 case, and observe larger pulsations in can number 1
and its neighbours. We also identify4 the nonlinear mode shape
at the dominant frequency and present it in Fig. 9.b. There is
good agreement between this nonlinear, identified mode shape
with the most unstable linear mode in Fig. 9.a. This can be inter-
preted as follows. In the linear regime only one mode is linearly
unstable, which in the nonlinear regime saturates to a limit cy-
cle amplitude. The differences between the linear and nonlinear
mode shapes are due to nonlinear effects.

We present in Fig. 13 the calculated spectra for the Dirac2

4how this identification is carried out is discussed in detail in the next section

case, and identify in Fig. 14 the nonlinear mode shape at the
two dominant frequencies of Fig. 13.a. The two nonlinear mode
shapes do not resemble any of the linear mode shapes of Fig. 10.
This can be interpreted as follows. In the linear and nonlinear
regime many modes are unstable. The nonlinear mode shape is,
in a weakly nonlinear sense, a linear combination of all unstable
modes. Secondly, the shape of these modes is sensitive to per-
turbations, which arise naturally from the nonlinearities of the
problem, and the mean mode shape is the result of all the modes
competing with each other, subject to the background noise.

We also notice that the increased flame response in can 1
does not lead to a noticeable local increase of the pulsation am-
plitude, and to a modest increase of the overall pulsation level
(compare Fig. 13.a and Fig. 11.a). In fact, despite the fact that
the linear flame response in can 1 is twice as large, its nonlin-
early saturated counterpart is less than twice as large as in the
other cans at the limit-cycle amplitude because of the saturation
(3). This means that the symmetry-breaking is weaker in the
nonlinear regime than in the linear regime, because we kept the
flame saturation the same in all cans. In this paragraph we then
further investigate the effect of the nonlinearity on the solution.
In general, the saturation of the flame response depends often on
u′/U , where u′ is the acoustic velocity at a reference cross sec-
tion close to the flame and U is the mean bulk velocity on the
same cross-section. It is also often the case that stronger flame
responses in the linear regime saturate to higher amplitudes u′/U ,
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FIGURE 11: Spectra for the simulated symmetric case. Amplitude spectra of the acoustic pressure from the timeseries of the simulation
for the symmetric case. a) can space. b) azim. modes space. Dashed lines are the maximum spectra, while continuous lines are the
average spectra

FIGURE 12: Spectra for the simulated Dirac1 case. a) acoustic pressure in the cans. b) acoustic pressure in terms of the azim. modes.
Dashed lines are the maximum spectra, while continuous lines are the average spectra

see e.g. [26], but this is not a general rule. Under this assump-
tion, we study what happens to the Dirac2 case if we make the
flame in can 1 stronger also in the nonlinear regime, by multi-
plying κ in (3) by 2. For reasons of brevity, we do not present
the spectra of this case, but just the identified mode shapes of the
two dominant peaks in Fig. 15. The two peaks occur at the same
two frequencies of the Dirac2 case of Fig. 13. We observe that
this leads to a larger loss of rotational symmetry of the system
as compared to the baseline Dirac2 case of Fig. 14, and also to a
higher pulsation amplitude in can 1.

We then present in Fig. 16 the spectra from a can-annular
engine with 12 cans. The sensors in this case are not at the same
position of the model, but in the same relative position in each
can, so that the symmetry of the system is preserved also in the

observations. We observe a good agreement with the simplified
model, both in terms of the shape of the spectra of the cans, fre-
quency spacing between the azimuthal modes, trends as function
of frequency and ratio between maximum spectra (dashed lines)
and average spectra (continuous lines).

PREDICTION OF COHERENCE PATTERNS
For the derivation of the following theoretical results, the

flames are assumed to act as stochastic monopole sources, to
be uncorrelated among the different cans, and to have the same
spectral power density. The following relations are also derived
considering the system is linear. This is a fair assumption to
make in those cases when the system is linearly stable and the
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FIGURE 13: Spectra for the simulated Dirac2 case. a) acoustic pressure in the cans. b) acoustic pressure in terms of the azim. modes.
Dashed lines are the maximum spectra, while continuous lines are the average spectra

FIGURE 14: We present in a) and b) the identified nonlinear
mode shape estimated from the time-series of the Dirac2 case
with the flame response switched on, at a fixed frequency. In
particular a) and b) correspond each to the two highest peaks in
Fig. 13.a. Neither of the two identified nonlinear mode shapes
presented here resemble any of the linear mode shapes presented
in Fig. 10

FIGURE 15: Same as Fig. 14 but after rescaling the nonlinear
saturation constant κ . The pattern is similar, but the higher am-
plitude in can 1 is now more pronounced, with a stronger depar-
ture of the pulsation pattern from the symmetric baseline, char-
acterized by all bars at the same height

level of background noise is sufficiently low to not push the sys-
tem in the nonlinear regime, so that the linearized system is rep-
resentative of the system dynamics.

Let p j be the acoustic pressure measured in the j-th can. The

coherence between the acoustic pressure measured in cans i and
j is defined as:

Ci j(ω)≡
E[p̂i(ω)p̂ j(ω)∗]√

E[|p̂i(ω)|2]E[|p̂i(ω)|2]
(5)

where the asterisk denotes complex conjugation, and
E[p̂i(ω)p̂ j(ω)∗] is the cross-spectral density at frequency
ω between the signal pi(t) and the signal p j(t). In the sym-
metric case, the spectral amplitudes |p̂i| appearing in the
denominator are the same in all cans. Assuming the system is
ergodic and stationary, the expected values can be estimated by
means of time averages:

Ci j =
p̂i(ω)p̂ j(ω)∗√
|p̂i(ω)|2 · |p̂ j(ω)|2

(6)

where the overbar denotes a time average over a sufficiently long
observation window. The coherence can be calculated applying
(6) to time simulations or engine measurements, and can be pre-
dicted using (5) from the model, as we discuss next.

From the model in Fig. 2, we can calculate the linear transfer
function G between the N flame sources sss≡ [s1, . . . ,sN ] placed at
the flame positions xxxf and the acoustic pressures ppp≡ [p1, . . . , pN ]
at the flame position:

p̂pp = GGG(ω)ŝss (7)

In (7) the operator GGG(ω) is the Green function GGGf(xxx,ω) evalu-
ated at the flame position, i.e. GGG(ω) ≡ GGGf(xxxf,ω). If the system
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FIGURE 16: Spectra for an engine measurement. Amplitude spectra of the acoustic pressure from engine data. a) can space. b) azim.
modes space. Dashed lines are the maximum spectra, while continuous lines are the average spectra

exhibits discrete rotational symmetry, GGG is circulant. We can cal-
culate next

p̂ppp̂ppH = GGGŝss(GGGŝss)H = GGGŝssŝssHGGGH (8)

where we neglect to write the explicit dependence on ω of all
terms for convenience, and pppH denotes the Hermitian conjugate
of ppp. Because the noise sources are uncorrelated, we have that
E[ŝssŝssH ] = ŝ2III, where III is the identity matrix of size N, and ŝ2 is
the scalar noise power. The expected value of (8) simplifies to

E[p̂ppp̂ppH ] = GGGGGGH ŝ2 (9)

The (i, j)-th element of (9) appears at the numerator of (5).
Exploiting the symmetry, one can express the expected power
E[|p̂i(ω)|2] appearing at the denominator of (5) as

E[|p̂i(ω)|2] = E[p̂i(ω)p̂i(ω)∗] =
1
N

N

∑
i=1

E[p̂i(ω)p̂i(ω)∗] (10)

=
1
N

E[pppH ppp] (11)

Similarly we can calculate

p̂ppH p̂pp = (GGGŝss)HGGGŝss = ŝssHGGGHGGGŝss (12)

By taking the expected value of (12) we obtain

E
[
p̂ppH p̂pp

]
= s2 |GGG|2 (13)

where |GGG| is the Frobenius norm of GGG (square root of the summed
magnitude-squared elements). Finally, substituting (13) into (10)
and (10) and (9) into (5) we obtain

CCC = N
GGGGGGH

|GGG|2
(14)

We make use of (14) to predict the coherence pattern of the sym-
metric case with the flame response switched off. We present in
Fig. 17 the pattern at the frequency of the modes of azimuthal or-
der m = 0,3,6 in the black cluster close to ω0 of Fig. 5, in terms
of phase (angle of Ci j) and magnitude (absolute value of Ci j). In
each of the three frames, each of the 12×12= 144 squares repre-
sent a result between two sensors. Each square belonging to the
top left triangular grid at position (i, j) represents the phase of
Ci j, i.e. the phase difference between pi and p j. The same phase
result for the square at position ( j, i), which is the symmetric of
(i, j), on the other side of the white diagonal, is not presented
because it is trivially C ji = −Ci j. Each square belonging to the
bottom right triangular grid at position (i, j) presents instead the
magnitude of the coherence. We focus for example on the first
frame of Fig. 17, which was obtained at the frequency of the
axial mode m = 0. Despite the frequency exactly matching the
axial mode frequency, the phase pattern between cans is very dif-
ferent from the phase pattern typical of an axial mode (phase of
zero between all pairs of cans). This happens because the other
modes are very close in frequency to the axial mode, and then
they also contribute significantly to this linear response. Similar
observations can be made regarding the other two frames.

We can compare this with the engine result of Fig. 18, ob-
tained using (6) on the timeseries presented in Fig. 16. In par-
ticular the coherence matrix (6) is evaluated at the frequency of
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the peaks of the modes of order m = 0,3,6 in Fig. 16.b. The
comparison shows good qualitative agreement in terms of the co-
herence, despite violating the linear hypothesis of the prediction.
The match in terms of phase difference is similar only for the
push-pull mode (m = 6) in the third frame, while it is quite dif-
ferent for the other two frames. This does not come as a surprise.
In fact, in Fig. 18 we observe the modal response of the system,
which we describe next. In the first frame of Fig. 18 the phase
pattern is mostly zero, as is typical for an axial mode. In the
second frame we can observe three banded diagonal stripes of
phase close to zero (light blue) and π (red), which is a pattern
for a standing solution with fixed nodes in space. Finally, the
third frame shows a typical push-pull pattern, where the alternat-
ing light blue/red pattern shows the jump in phase of π from one
can to the next. The three frames can also be ordered by increas-
ing level of clarity of the pattern from the first (left) to the third
frame (right). This corresponds to the increasing dominance of
the respective modes of order m = 0,3,6 at their peak frequency
in Fig. 16.b as compared to the other modes.

When considering the differences between Figs. 17 and 18,
we stress that Fig. 17 captures the whole system (linear and sta-
ble) response to the excitation of the background noise, while
Fig. 18 captures the modal response of the dominant mode of the
system (nonlinear and unstable) subject to background noise.

CONCLUSIONS
We discuss a model for low-frequency thermoacoustics in

can-annular combustors. Because of the approximate rotational
symmetry of the system and the weak coupling occurring at the
turbine inlet between adjacent cans, thermoacoustic modes ap-
pear in clusters. Each cluster contains modes of azimuthal order
m = 0,±1,±2,N/2 for a can combustor with an even number
N of cans. Each mode is axial in the main body of the can and
azimuthal at the turbine inlet. The frequency spacing of the clus-
ter, i.e. how tightly packed together are the modes of the cluster,
is governed by the strength of the can-to-can coupling, which
depends on an effective gap length Lgap at the turbine inlet, as
presented in Fig. 1. As the gap becomes smaller, in each cluster
the frequencies of the modes approach the frequency of the axial
mode, which remains unchanged.

When one considers the effect of the flame on the system,
we observe that usually all the modes of a cluster become unsta-
ble together at a given frequency, as exemplified in Fig. 5. The
linear stability analysis cannot then in principle predict which
eigenmode will take over in the nonlinear regime. To overcome
this problem, we run stochastic dynamical simulations of the sys-
tem. The results of the simulations are studied in terms of aver-
age and maximum spectra, and compared with engine measure-
ments. Shapes of the spectra, spacing of the peaks within a clus-
ter, and the ratio between maximum and average spectra show
good agreement with the tuned model.

A pattern where the flame response of one can is increased
is investigated. If this stronger flame in one can leads to only
one unstable mode (case Dirac1), we observe mode localization
in the nonlinear numerical simulations, as discussed in previous
work based on linear analyses and experimental observations [3].
This mode localization consists in an increased pulsation ampli-
tude in one can and its closest neighbours as compared to the
other cans. If instead many modes are unstable at the same time
(case Dirac2), this mode localization is present in the linear anal-
ysis of the system, but may or may not appear in the nonlinear
regime as function of the saturated state of the system in the non-
linear regime. We have observed for two cases how the nonlinear
mode shape is completely different from the shapes of the lin-
ear eigenmodes. This shows that dynamical simulations of the
system are needed to be predictive on the nonlinear state of the
system.

Finally, we considered the dynamics of a stable thermoa-
coustic mode excited by background noise. Assuming a linear
system, the coherence and the phase between cans is predicted.
This is compared with estimates of the same quantity on the non-
linear unstable modes of the engine measurements. Despite the
fact that the system is unstable and nonlinear, we find good qual-
itative agreement in terms of the magnitude of the coherence be-
tween cans, and some agreement in terms of the phase between
cans.
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