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ABSTRACT
This paper first characterizes the acoustic field of two annu-

lar combustors by means of data from acoustic pressure sensors.
In particular the amplitude, orientation, and nature of the acoustic
field of azimuthal order n is characterized. The dependence of the
pulsation amplitude on the azimuthal location in the chamber is
discussed, and a protection scheme making use of just one sensor
is proposed. The governing equations are then introduced, and
a low-order model of the instabilities is discussed. The model
accounts for the nonlinear response of M distinct flames, for sys-
tem acoustic losses by means of an acoustic damping coefficient
α and for the turbulent combustion noise, modelled by means of
the background noise coefficient σ . Keeping the response of the
flames arbitrary and in principle different from flame to flame,
we show that, together with α and σ , only the sum of their re-
sponses and their 2n Fourier component in the azimuthal direc-
tion affect the dynamics of the azimuthal instability. The existing
result that only this 2n Fourier component affects the stability of
standing limit-cycle solutions is recovered. It is found that this
result applies also to the case of a non-homogeneous flame re-
sponse in the annulus, and to flame responses that respond to the
azimuthal acoustic velocity. Finally, a parametric flame model is
proposed, depending on a linear driving gain β and a nonlinear
saturation constant κ . The model is first mapped from continuous
time to discrete time, and then recast as a probabilistic Markovian
model. The identification of the parameters {α,β ,κ,σ} is then
carried out on engine timeseries data. The optimal four param-
eters {α,σ ,β ,κ} are estimated as the values that maximize the
data likelihood. Once the parameters have been estimated, the
phase space of the identified low-order problem is discussed on
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selected invariant manifolds of the dynamical system.

NOMENCLATURE
α equivalent acoustic damping coefficient, see (5)
β equivalent linear driving coefficient, see (13)
χ nature angle of the acoustic field, quantifying how much

the system is standing vs spinning, see (2) and Fig. 2
∆t timestep, i.e the reciprocal of the sampling frequency
∆ω filtering bandwidth of the rectangular frequency domain

filter centered on ω0
η1,η2 time varying coefficients of a projection on standing

modes, see (1)
κ nonlinear saturation constant, see (13)
µz quaternion-valued, additive white gaussian noise,

i.e. µz = µ0 + iµ1 + jµ2 + kµ4 where each µr ,r =
0,1,2,3 is real-valued additive white gaussian noise

ω0 angular frequency of the azimuthal instability
σ equivalent noise intensity level, see (4)
Θ set of four parameters describing the system dynamics,

introduced after (13)
θ azimuthal coordinate of the cylindrical coordinate sys-

tem, spanning [0, 2π), see (1)
θ (2n) phase of the 2n-azimuthal component of the flame re-

sponses, see (7) and the appendix
θ0 orientation angle of one of the acoustic pressure antin-

odes of the acoustic field, see (2) and Fig. 2
ϕ slowly varying temporal phase of the thermoacoustic in-

stability, see (2)
A slowly varying amplitude of the whole acoustic pressure

field in the combustion chamber, see (2) and Fig. 2

1 Copyright c© 2020 by ASME



A estimate of the mean amplitude of oscillation E[A]
Ap(θ) slowly varying envelope amplitude of the acoustic pres-

sure in the combustion chamber, as function of the azim.
location θ , see (3)

c speed of sound
E[x] Expected value of the variable x, i.e. E[x] =

∫
xP(x)dx

L (Θ|x̃2:T ) Likelihood function of the parameters Θ for one
fixed, observed timeseries x2:T = x̃2:T . It measures the
goodness of fit of the model, given the observed time-
series, as function of Θ, see (18)

M number of equispaced flames in the annular combustor
m integer index referring to the m-th flame or burner or seg-

ment, from 0 to M−1
n azimuthal order of the thermoacoustic instability, see (1)
N(0) sum of all the flame responses, see (7) and the appendix
N(2n) absolute value of the 2n-azimuthal component of the

flame responses, see (7) and the appendix
P(x), p(x) PDF of the variable x
P(xt |xt−1;Θ) PDF of the variable xt at instant t, conditional on

the value of the variable xt−1 at the previous time instant,
for a given set of parameters Θ, see (17)

PDF Probability Density Function
Qθ describing function of the flame response and of the

acoustic losses, projected on the axial and radial mode
shape, introduced in (6). Qθ describes the contribution
over an azimuthal sector of azimuthal width dθ , because
it is integrated over the azimuthal coordinate θ in (4)

Qm Contribution to Qθ of the m-th flame. Initially kept
generic, then fixed in (13)

Qθ ,flames Part of Qθ representing the response of the flames, see
(6)

T number of samples in the timeseries
t continuous time variable or discrete time index in the

section on the maximum likelihood estimate
x1:T set of random samples of the system state x, ordered

from time index t = 1 to time index t = T
x̃1:T recorded timeseries of x1:T , i.e. a specific realization of

the samples x1:T of the state x, assumed ergodic

INTRODUCTION
Thermoacoustic pulsations are one of the challenges of com-

bustion applications [1]. They can lead to noise transmission
to downstream components, increase of pollutants’ emissions,
and structural damage of the combustor hardware [2]. The level
of acoustic pressure pulsations in gas turbines combustors is of
the order of 1-2% of the mean operating pressure [3], and ever
increasing operating pressures needed for higher efficiency are
pushing pulsation levels higher, of the order of 1 bar. We focus
on thermoacoustic pulsations of one common combustor archi-
tecture, the annular combustor, specifically on the annular com-
bustors of the Ansaldo Energia GT26 engine [4] as presented in

Fig. 1. The air from the compressor diffuses first in an annular
plenum, from which it passes through a set of M burners into
the first annular combustion chamber, which is in turn connected
to the high pressure (HP) turbine. The air then enters a sec-
ond annular combustion chamber before entering the second low
pressure (LP) turbine. In the development process, the acous-
tic response of burners and flames is typically first characterized
experimentally as single burners at atmospheric conditions, and
then the full annular system can be modelled as a network of
acoustic elements [5, 6]. Atmospheric tests need to be designed
to guarantee the transferability between atmospheric tests and en-
gine conditions, e.g. regarding correct geometrical scalings [7,8]
and reproduction of the correct flame shape [9, 10, 11]. Because
of these challenges, it is crucial to correctly identify and charac-
terize pulsation data of annular engines [12].

FIGURE 1: Sketch of the longitudinal cut of a GT26 gas tur-
bine. In this paper we present results of pulsation amplitudes of
the first annular combustor (EV combustor) and second annular
combustor (SEV combustor).

Thermoacoustic modes can develop in the annulus in the az-
imuthal direction, and are the topic of this paper. We focus in
particular on cases where thermoacoustic azimuthal modes oc-
cur at one angular frequency ω0

1. Because of the rotational
symmetry of the combustor, these modes occur in pairs, where
to each pair corresponds an integer azimuthal order n. The
two modes in each pair are to a good approximation [13] de-
generate, i.e. share the same eigenfrequency, and span a space
of dimension two. One can choose with freedom a basis for
each space, with the most common choices being two stand-
ing waves {cos(nθ),sin(nθ)} and two counter-rotating spinning
waves {cos(nθ −ω0t),sin(nθ +ω0t)}. One can then project the
problem on these bases and either characterize the system dy-
namics or identify the parameters that define the response of the
flames [14,15,16,17,18,19]. Alternatively, a model for the flame
response is not assumed, and what is identified is the describing
function of the flames minus the acoustic losses, projected on the

1and its multiples 2ω0, 3ω0, . . .
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azimuthal modes [13]. In all these works the two coefficients
η1(t) and η2(t) of the two elements of the basis are identified.
For example, when the two standing modes are used as basis, the
acoustic pressure field is written as:

p(θ , t) = η1(t)cos(nθ)+η2(t)sin(nθ) (1)

where n is the azimuthal order of the instability and θ is the
azimuthal coordinate, periodic in [0, 2π). One then derives the
governing equations for η1 and η2, which show that they behave
as weakly nonlinear oscillators with angular frequency ω0, and
standing and spinning waves occur as synchronized states of the
two oscillators. Equation (1) can be rewritten as [20]:

p(θ , t) =Acos(n(θ −θ0))cos(χ)cos(ω0t +ϕ)+

Asin(n(θ −θ0))sin(χ)sin(ω0t +ϕ) (2)

where the variables (A,nθ0,χ,ϕ) depend on the time t. The
three variables {A,nθ0,2χ} can be interpreted as spherical co-
ordinates, as presented in Fig. 2. The factor A multiplies linearly
the whole right hand side of (2) and is then called the slowly
varying amplitude of the azimuthal instability. The angle χ is
called the nature angle, because it describes the nature of the
azimuthal instability, i.e. whether it is standing (χ = 0, on the
equator in Fig. 2) or spinning, either anticlockwise (2χ = π/2,
North pole in Fig. 2), or clockwise (2χ = −π/2, South pole in
Fig. 2), as discussed in detail in [20]. In particular the angle 2χ

is the latitude angle on the sphere of Fig. 2. Finally, the angle θ0
describes the azimuthal location θ at which the acoustic pulsa-
tion is maximum, and is then called the orientation angle. This is
the longitude angle in Fig. 2.

This paper discusses how to exploit the new ansatz (2) to
characterize the dynamics, design protection schemes and iden-
tify the system structure from timeseries of a running engine. For
the identification part, we propose to estimate the parameters of
the model as the values of the parameters that maximize the like-
lihood of observing the timeseries. To calculate this, the model
of the system is recast as a probabilistic model, and the Marko-
vian property is used to ease the calculation of the likelihood.

ACOUSTIC FIELD CHARACTERIZATION
This section presents the reconstruction of the azimuthal

acoustic pressure field of the annular combustor and its character-
ization. We study the pulsation at a fixed operating condition of
one engine based on timeseries data. Pulsation sensors mounted
in the SEV combustor of Fig. 1 record timeseries of acoustic pul-
sations of azimuthal order n = 3 with a clear peak at frequency
ω0. The considered engine has the sensors placed at different,

nθ0

2χ

y

x

z

A

spinning counterclockwise

spinning clockwise

standing

FIGURE 2: Poincaré sphere representation of an azimuthal insta-
bility of order n, as presented in (2). The radius A describes the
amplitude of acoustic pressure oscillation, the nature angle 2χ

describes whether the system is spinning (at the poles) or stand-
ing (on the equator) and the angle nθ0 describes the location of
the pressure antinode of the standing component of the instabil-
ity, as detailed in [20].

not equally spaced, azimuthal locations in the annular combus-
tor. The distance in the axial direction between sensors is acous-
tically compact in comparison to the wavelength 2πc/ω0, where
c is the speed of sound in the combustion chamber. The length of
the timeseries of the sensors account for a number of limit cycles
between 5’000 and 15’000, and are sampled at a frequency such
that more than 50 points are sampled for each acoustic period.
The timeseries are band-pass filtered in frequency domain with a
bandwidth ∆ω/ω0 = 0.5 and then used in the multi-microphone
method [21, 22] to reconstruct the coefficients η1(t) and η2(t)
appearing in (1). From these two coefficients the four variables
{A,χ,nθ0,ϕ} are reconstructed as detailed in [20]. The statistics
of these quantities are discussed next.

The joint probability density function (PDF) of the ampli-
tude A and of the nature angle χ is presented in Fig 3. This is
estimated as a 2D histogram of the timeseries {A(t),χ(t)} with
17 bins per variable in the observed range, then presented as a
contour plot. The color allows to appreciate how often the sys-
tem stays in a certain state. In particular, the system is rarely in
the following states: i) at low amplitudes close to zero, because
the background noise pushes it away from there; 2) at ampli-
tudes higher than 1.5, because the flames’ gains are lower than
the acoustic damping there; 3) close to the poles at 2χ =±π/2,
because the background noise pushes it away from there [23].
Instead, there is a clear peak of the PDF for system states that are
between standing and spinning anticlockwise, where the system
lingers for most of the time. In this Figure and in the following,
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FIGURE 3: Joint statistics of the amplitude A and of the nature
angle 2χ in the SEV combustor for an instability of azimuthal or-
der n = 3. The system has a clear preference for standing states
because the PDF peaks at 2χ ≈ 0. The dependence of the mean
value of amplitude on the nature angle is presented with a ma-
genta line, showing a higher amplitude A when the mode is spin-
ning anticlockwise as compared to when it is standing or spin-
ning clockwise. In this Figure and in the following amplitudes
A are nondimensionalized with respect to the mean amplitude
A, and the colorscale is linear and always between zero and the
maximum value.

all amplitudes are nondimensionalized with respect to the mean
pulsation amplitude A.

The joint PDF of the amplitude A and of the orientation an-
gle nθ0 is presented in Fig. 4. The dependence on the orientation
angle of the PDF is weak. The same applies to the mean ampli-
tude for a given angle nθ0, presented with a blue line.

One different amplitude to consider is the local acoustic
pressure amplitude Ap(θ) at a certain azimuthal angle θ in the
combustion chamber. For example, for the particular case of a
purely standing acoustic field, Ap depends on θ because there are
clearly defined pressure nodes and antinodes in the combustion
chamber. One can calculate the local slowly varying amplitude
of acoustic pressure at one location θ as:

Ap(θ)≡ A

√√√√cos2 [n(θ −θ0)]cos2(χ)

+ sin2 [n(θ −θ0)]sin2(χ)
(3)

which appeared first in [24, Fig. 2b as R(θ)]. One observes
from (3) that if the mode is exactly spinning (2χ = ±π/2) one
recovers a uniform amplitude Ap(θ) = A in the whole annulus,
while if the mode is exactly standing (χ = 0) the amplitude has
structure Ap(θ) = A|cos [n(θ −θ0)] | with one pressure antinode

FIGURE 4: Joint probability density function (PDF) of the ampli-
tude A and of the orientation angle nθ0 of the pressure antinode
of the standing component of the mode, for a pulsation mode of
azimuthal order n = 3 in the SEV combustor. The PDF is quite
uniform with respect to the orientation angle nθ0 close to 0. The
blue line represents the mean value of the amplitude A condi-
tioned on the orientation angle nθ0, confirming the approximate
homogeneity.

at the azimuthal angle θ0. The PDF of Ap(θ) as function of θ is
presented in Fig. 5. We observe a rather homogeneous pulsation
amplitude as function of θ , consistently with Fig. 4, where the
amplitude A has no clear preferential orientation angle nθ0.

PROTECTION
This section discusses how, based on the position of a pro-

tection sensor, a protection limit based on its value can be fixed.
The previous section discussed in Fig. 5 how the PDF of the lo-
cal pulsation amplitude depends on the location θ in the annulus.
For this case, regarding pulsations in the SEV combustor with az-
imuthal order n = 3, the local amplitude Ap(θ) is quite constant
as function of θ , so that the pulsation sensor θp provides a good
estimate of the maximum pulsation amplitude regardless of its
position θp, and an upper limit Alimit can be set for protection di-
rectly on the probe. Typically this limit corresponds to a certain
percentile of acoustic pulsation –say the 98th percentile, which
should not be exceeded for a certain time interval and under cer-
tain conditions.

Azimuthal pulsations are not however always uniform in
the annulus. For example, we present in Figs. 6 and 7 the
case of pulsations of azimuthal order n = 2 in the EV combus-
tor at a different operating condition, filtered with a bandwidth
∆ω/ω0 = 0.35. In this second case Fig. 6 shows that there is
a preferential orientation angle nθ0 = 0 where the system ex-
hibits a larger amplitude A2. When one considers the local am-

2the frame of reference was rotated so that the largest amplitude occurs at4 Copyright c© 2020 by ASME



plitude of pulsation Ap(θ) in the annulus, as presented in Fig. 7,
four characteristic locations where the amplitude is higher, at
θ = rπ/2, r = 0,1,2,3 are found. These locations correspond
to the 2n = 4 locations of preferred position of the four pressure
antinodes of the azimuthal instability of order n = 2. They cor-
respond to the single peak at nθ0 = 0 of Fig. 6.

FIGURE 5: Probability density function (PDF) of the local pulsa-
tion amplitude Ap(θ) as function of the azimuthal location θ , for
a pulsation mode of azimuthal order n = 3 in the SEV combus-
tor. The local amplitude Ap is calculated from the data of Fig. 4
by means of (3). The mean amplitude for a given angle θ is pre-
sented with a blue line. The result does not depend on the angle
θ to a good approximation.

In this case, the location θp of the protection sensor may
not match one of the locations θ = rπ/2, r = 0,1,2,3 where the
amplitude is largest, and then it may measure a pulsation ampli-
tude that underestimates the maximum amplitude in the annulus.
One then first determines the percentile of pulsation at which the
maximum amplitude in the annulus, at θ = 0, matches the limit
Alimit. Once this percentile is found – say the 98th percentile –
one recovers the limit on the protection sensor as the amplitude
Alimit,probe at which Ap(θp) is at the same percentile.

Up to this point, the system has been described in terms
of meaningful physical features but without discussing which
underlying physical equations govern the observed dynamics.
These equations are discussed next, initially by keeping the
flame response generic. In a second step, a simple structure for
the flame response is employed to make the model numerically
tractable. This allows the identification of the system, which is an
important step needed to then assess possible mitigation strate-
gies.

θ = 0.

FIGURE 6: Joint probability density function (PDF) of the ampli-
tude A and of the orientation angle nθ0 of the pressure antinode
of the standing component of the mode, for a pulsation mode of
azimuthal order n = 2 in the EV combustor (the orientation angle
nθ0 was first wrapped between −π/2 and π/2). The PDF peaks
at a preferential orientation angle nθ0 close to 0. The blue line
represents the mean value of the amplitude A conditioned on the
orientation angle nθ0.

FIGURE 7: Probability density function (PDF) of the local pul-
sation amplitude Ap(θ) as function of the azimuthal location θ ,
for a pulsation mode of azimuthal order n = 2 in the EV com-
bustor. The local amplitude Ap is calculated from the data of
Fig. 6 by means of (3). The peak of preferred location of nθ0 in
Fig. 6 maps here to 2n = 4 locations, since the azimuthal order
is n = 2. These locations are multiples of 2π/2n = π/2, where
the tails of the PDFs are longer in the vertical direction and the
mean amplitudes, presented with a blue line, are also higher.
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THE MODEL
This section derives a set of ordinary differential equations

of the four variables A,nθ0,χ,ϕ that have been characterized.
The dynamics of the system are discussed in general terms, and
a brief discussion of the fixed points of the system is presented.

The equations are obtained by substituting the ansatz (2) into
the fluctuating mass and momentum conservation equations in
cylindrical coordinates, and considering their variation in the az-
imuthal direction [23]:

(lnA)′+(nθ
′
0 +ϕ

′ sin(2χ))i+ϕ
′ cos(2χ) j−χ

′k =

+
1
2

1
2π

∫ 2π

0

(
ei2n(θ−θ0)ekχ + e−kχ

)
Qθ dθ ekχ (4)

+

(
−ω

2
+

ω2
0

2ω

)
e−kχ jekχ +

σ2

4A2 (1+ tan(2χ)k)+
σ√
2A

µz

where i, j,k are the three imaginary units of quaternion algebra
[25], the stochastic differential equation (4) has to be interpreted
in the Itô sense, and the prime denotes a derivative with respect to
the time variable t. The model (4) and its derivation can be found
in [23], and only a brief summary is presented next. The left
hand side of (4) describes the evolution of the four variables of
interest {A,nθ0,χ,ϕ} as a function of time. The right hand side
of (4) describes the vector field that the four variables follow.
In particular the second line in (4) is the contribution over the
annulus of Qθ , which is the projection of the describing functions
of the flames and of the acoustic losses on the azimuthal mode
[13]:

Qθ = 2πQθ ,flames(A,χ,nθ0)−Mα (5)

where the last term describes the acoustic damping of the sys-
tem, assumed linear, by means of the coefficient α , and M = 24
is the number of burners of the combustor3. For a linearly unsta-
ble combustor, the real part of the whole second line is positive at
small amplitudes A, so that it pushes the system state away from
the origin. For a supercritical case, this real part then decreases
monotonically as function of amplitude (because the flames satu-
rate nonlinearly) and becomes negative, keeping the system state
always at finite amplitudes A.

The first term on the third line of (4) describes how the fre-
quency of oscillation ω may vary from ω0, depending on the
angle χ which appears in the two exponentials. This can lead to
small changes of the oscillation frequency, depending on whether
the mode is standing with χ = 0 or spinning with 2χ =±π/2.

Ending the analysis of (4), the last two terms on the third
line of (4) depend on the intensity σ of the background noise.
These terms arise because of the random HRR fluctuations of the

3the damping leads to a linear growth rate of−Mα/2 in absence of the flame.

turbulent flame [26,27] and are modelled here as stochastic [28],
with µz being a quaternion-valued additive white gaussian noise
process.

We allow the flames to respond generically to the acoustic
field, which is fully described by the three variables {A,χ,nθ0}.
In particular both effects of the acoustic pressure and of the az-
imuthal acoustic velocity on the heat release rate response are
captured [29, 17, 30, 31, 32, 33]. Exploiting the fact that each
flame is acoustically compact, we can rewrite Qθ ,flames as:

Qθ ,flames =
M−1

∑
m=0

Qm(A,χ,n(θ0−θm))δ (θ −θm) (6)

where δ (x) is the Dirac distribution, and θm is the location of the
m-th burner, θm = 2πm/M, m= 0,1, . . . ,M−1, and the projected
flame describing functions Qm = Qm,r + jQm, j may be different
from one another, and are assumed here to be real-valued for
simplicity, as in many other studies [14, 16, 13]. Under these
assumptions the thermoacoustic oscillation frequency ω matches
the natural oscillation frequency ω0 and the first term in the last
row of (4) cancels out [34]. As discussed in the appendix, with
the choices (5,6) the model (4) simplifies to:

(lnA)′+(nθ
′
0 +ϕ

′ sin(2χ))i+ϕ
′ cos(2χ) j−χ

′k = (7)

1
2

[
1
2

N(2n)ei2nθ (2n)
e2kχ +N(0)−Mα

]
+

σ2

4A2 (1+ tan(2χ)k)+
σ√
2A

µz

where the coefficients {N(r), r = 0, . . . ,M/2} are the Fourier
coefficients of the flame responses in the azimuthal direction,
which are defined in the appendix in eq. (25). In particular
N(0) is the sum of all the flame responses, and N(2n) and θ (2n)

describe the 2n azimuthal component of the flame responses and
are respectively the non-negative amplitude and the phase of such
component. Similarly to the describing function Qm introduced
in (6), also these Fourier coefficients depend on the variables
{A,χ,nθ0}. Equation (7) shows that the dynamics of the sys-
tem, which in (4) depend on M distinct describing functions, are
actually driven only by the two functions N(0) and N(2n)ei2nθ (2n)

,
simplifying the problem.

It is then of interest to study the fixed points of the system
(7) when the stochastic noise source µz is set to zero. The real
part of (7) after some manipulation becomes:

A′ =
A
2

N(0)+
A
4

N(2n) cos(2nθ
(2n))cos(2χ)+

σ2

4A
− M

2
αA (8)

The amplitude Alc at which the right hand side of (8) is zero is
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the solution of:

1
4

N(2n)(Alc,χ,nθ0)cos(2nθ
(2n)(Alc,χ,nθ0))cos(2χ)+

1
2

N(0)(Alc,χ,nθ0)+
σ2

4A2
lc
=

M
2

α (9)

where in (9) we explicitly write the dependence of N(0) on its
arguments, and a direct dependence of the amplitude Alc on the
nature angle 2χ is observed in the term cos(2χ). A similar de-
pendence of the mean amplitude of pulsation A on the nature
angle 2χ is observed in the engine data of Fig. 3. Equation (9)
can be interpreted as an acoustic energy balance, where the left
hand side are energy sources and the right hand side are energy
sinks, and the amplitude Alc is such that the Rayleigh criterion
is zero [24]. Similarly, the k-imaginary part of (7) is, after being
multiplied by −1:

χ
′ =−1

4
N(2n) cos(2nθ

(2n))sin(2χ)− σ2

4A2 tan(2χ) (10)

=− sin(2χ)

4

[
N(2n) cos(2nθ

(2n))+
σ2

A2
1

cos(2χ)

]

Equation (10) shows that only the 2n Fourier component N(2n),
and not the sum N(0) of the flame responses, affects the nature
angle. From (10) one can characterize with generality the nature
angles that are fixed points in the χ direction, by looking for
solutions for which χ ′ = 0:

N(2n) cos(2nθ
(2n))sin(2χ)+

σ2

A2 tan(2χ) = 0 (11)

One observes that standing states (χ = 0) are always a solution
of (11), regardless of the values of the amplitude A, of the ori-
entation angle nθ0 and of the flame response. This makes the
horizontal plane passing through the equator an invariant mani-
fold, because the vector field in the direction normal to the plane
is everywhere zero on it.

Moreover, if N(2n) cos(2nθ (2n)) is negative, one observes
from (11) there may be two additional solutions, at nature angles
χ between zero and ±π/4. These would be mixed4 solutions
between the equator and the poles.

One can also look for orientation angles that are zeros of the
respective vector field, by looking for states such that nθ ′0 = 0.
The location of these zeros can also be drawn from symmetry
arguments [24] and is not repeated here. We also note that the
vector field in this direction is typically weaker, as will be exem-
plified from the engine data later.

4mixed in the sense of partially spinning and partially standing at the same
time.

STANDING STATES IN THE DETERMINISTIC CASE
In the case that the background noise contribution is negligi-

ble, as is typical of laminar experiments [35], one can set σ = 0
in (10):

χ
′ =−1

4
N(2n) cos(2nθ

(2n))sin(2χ) (12)

it is straightforward from (12) to calculate that the stability
of standing limit-cycles at χ = 0 depends only on the sign of
N(2n) cos(2nθ (2n)). In particular one recovers the N2n criterion,
which states that the standing solutions (when they exist) are
stable attractors if N(2n)(Alc,0,nθ0)cos(2nθ (2n)) is positive [24],
where Alc is the amplitude of these solutions5. This stability cri-
terion of standing solutions is however obtained here without as-
suming that the configuration is rotationally symmetric and with-
out assuming that the flames are not affected by the azimuthal
velocity, generalizing the theory of [24].

This analysis suggests that it is not necessary to fix a certain
flame response structure to derive general criteria on the type of
solutions (standing, spinning, mixed) that a certain combustor
exhibits and that it is possible to describe the system dynamics
in terms of the sum of the flame responses N(0) and their 2n az-
imuthal component N(2n)ei2nθ (2n)

. These components in fact af-
fect the stability of spinning and standing solutions, as shown in
experiments and in theory [36, 24].

MAXIMUM LIKELIHOOD ESTIMATE
In this section we perform the data assimilation to find the

optimal parameters that characterize the pulsation of azimuthal
order n = 3 in the SEV combustor presented earlier. We leave
the identification of the functions N(0) and N(2n)ei2nθ (2n)

for a
later study, and prefer instead to reframe the problem as para-
metric. In particular, focusing now on a single flame, we choose
a simple saturating model with monotonous response that de-
pend on the acoustic pressure in the combustion chamber Ap
only. This captures the effect that the local pulsation ampli-
tude Ap(θ) at one burner location modulates the acoustic veloc-
ity in the burner by means of the whole system upstream ad-
mittance [24], ultimately leading to the response of the flame
Qθ ,flames. By assuming a dependence on Ap only, we neglect the
effect that the azimuthal velocity may have on the heat release
rate response [17, 30, 31, 32, 33].

We constrain the projected describing function Qm of the m-
th flame to be real-valued as earlier mentioned and such that in

5In the reference [24] the factor cos(2nθ (2n)) did not appear because it did not
play a role in the rotationally symmetric configuration studied there. This applies
also later in this paper, where 2nθ (2n) is found to match exactly π on the vertical
plane containing the solutions.
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(a) optimal in the α direction (b) optimal in the β direction (c) optimal in the κ direction (d) optimal in the σ direction

FIGURE 8: Optimality of the identified parameters. In each frame the blue line is the likelihood of observing the engine pulsation data
of the SEV combustor of azimuthal order n = 3. In each frame, the optimal value of one of the parameters is presented with a vertical
black line. In each frame only the parameter presented on the horizontal axis is varied, while keeping the others constant. In all four
directions the identified value corresponds to the maximum of the likelihood.

the linear regime it is equal to β at zero amplitude Ap and in the
nonlinear regime it tends to 0 in the limit Ap→ ∞:

Qm(Ap) = β
2√

κ2A2
p +1+1

(13)

which is the describing function of the arctangent function model
in time domain β arctan(κ p(t))/κ , with κ a nonlinear saturation
constant. The flames lead to a linear growth rate of Mβ/2 in ab-
sence of noise, i.e. when σ = 0. This means that in the linear
regime and in absence of noise the overall linear growth rate ac-
counting for the damping is M(β −α)/2. With the choice (13),
the model (7) is fully defined by the parameters Θ = {α,β ,σ ,κ}
and we can now tackle the problem of identifying which values
of the parameters Θ best describe the measurement data. A dis-
cussion of the effect of the parameters on the phase space of the
model will come afterwards.

Since the engine data is uniformly sampled, the next step
consists of mapping the continuous time differential equation (7)
to its discrete counterpart, which maps the state at the timestep
t to the state at the timestep t +1, by using the Euler-Maruyama
scheme [37]:

(lnA)t+1 +(nθ0,t+1 +ϕt+1 sin(2χt))i+ϕt+1 cos(2χt) j−χt+1k =

(lnA)t +(nθ0,t +ϕt sin(2χt))i+ϕt cos(2χt) j−χtk+{1
2

[
1
2

N(2n)(At ,χt ,nθ0,t)ei2nθ
(2n)
t e2kχt +N(0)(At ,χt ,nθ0,t)−Mα

]
+

σ2

4A2
t
(1+ tan(2χt)k)

}
∆t +

σ√
2At

√
∆tN [000,111] (14)

where t denotes here a timestep and varies incrementally from
an initial condition at t = 0 to the total number of samples t = T ,

and N is the normal distribution with mean 000 = (0,0,0,0) and
variance the 4×4 unity matrix 111.

We introduce the 4× T vector x, whose t-th entry is xt =
(ln(At),nθ0,t ,ϕt ,χt), and a total of T samples are recorded over
a time of T ∆t, where ∆t is the timestep. One can re-write (14) in
terms of x as:

CCCt(xxxt+1− xxxt) = f (xxxttt)∆t +
σ√
2At

√
∆tN [000,111] (15)

where CCCt is an invertible square matrix depending on x at
timestep t and f is defined as the term within curly brackets in
(14). One recorded timeseries is one realization of the stochastic
system of equations (15), which can be interpreted as a proba-
bilistic model for the variable on the left hand side:

CCCt(xxxt+1− xxxt) ∝ N

[
f (xxxttt)∆t,

σ2

2A2
t

∆t111
]

(16)

In particular, given the process xt at timestep t, the probabilis-
tic model (16) describes how to draw the sample xt+1 given the
sample xt from the normal distribution N , having fixed all pa-
rameters Θ describing the model. This is equivalent to one step
of time integration of the stochastic differential equation (14).
However, the probabilistic model (16) can also be exploited in
a new, different way: given both samples at timestep xt and at
time xt+1, which are assumed to be available from a simulation
or engine measurement, it allows the calculation of the probabil-
ity of the occurrence of the known value xt+1, given the known
xt , again for a fixed set of parameters Θ = {α,β ,σ ,κ}.

Usually one, instead of considering the probability of just
one timestep given the previous, considers the probability of the
whole recorded timeseries p(x1:T ;Θ), where x1:T denotes the 4×
T vector {x1,x2, . . . ,xT}. Because (14) is Markovian, this can be
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FIGURE 9: Comparison of the statistics of the engine data and of the tuned model. in terms of amplitude A (left), orientation angle nθ0
of the acoustic field (middle) and nature . The three frames present the probability density functions of the spherical coordinates of the
system state on the Poincaré sphere of Fig. 2. . The vertical axis is linear, with the lower limit set to zero, in all three frames

recovered as a product of the probabilities of one timestep at a
time as just described:

p(x2:T ;Θ) =
T

∏
t=2

p(xt |xt−1;Θ) (17)

where the terms on the right hand side can be calculated by
means of (16). It is then apparent that the probability p is affected
by the choice of the parameters Θ. One then can study this by
introducing the likelihood function as:

L (Θ|x̃2:T ) = p(x2:T = x̃2:T ;Θ) (18)

where x̃2:T is the measured timeseries. One can then search for
the set of parameters Θ that maximises the likelihood (18), carry-
ing out a so-called maximum-likelihood estimate of the parame-
ters Θ.

This method was first validated on data of numerical sim-
ulations of (7), showing convergence of the estimated Θ to the
values used in the simulations. Then it was applied on the en-
gine data of the SEV annular combustor. The identified optimal
values of Θ are presented in Fig. 8 with vertical black lines. In
each of the frames, only one of the parameters is varied to check
that the identified value is indeed a maximum of the likelihood
probability.

PHASE SPACE CHARACTERIZATION
The identified values {α,σ ,β ,κ} fully define the equations

(7). We present in Fig. 9 a comparison of the statistics of the
engine data and of a stochastic simulation of (7) with the optimal
parameters Θ, run with the Euler-Maruyama numerical scheme

with the same nondimensional timestep of the engine and for a
duration corresponding to the same number of limit-cycles. We
have a good agreement between them in terms of amplitude A
(first frame) and of orientation angle nθ0 (second frame). The
third frame shows quite similar results, but a more clear peak
in the engine data. The mismatch may be caused by finite time
effects, i.e. the fact that the PDFs have not yet converged to their
stationary distribution.

We can study the flow of the three variables {A,nθ0,χ} on
the phase space of Fig. 2. This phase space has three dimen-
sions and is then hard to visualize. We decide to consider some
plane cuts of the phase space, and represent the in-plane compo-
nents of the 3-d flow. Of the many possible planes, we choose
to consider two planes that are also invariant manifolds of the
system, i.e. such that the normal component of the field to the
plane is zero: the vertical plane passing through both poles with
longitude angle nθ0 = 0 and the plane containing the equator line
of Fig. 2. We describe the two separately in the next two para-
graphs.

In Fig. 10 we discuss the vertical plane cut. In particular we
present just half of the results, because of the symmetry of the
system. In the top row of the figure we present the sum of the
flame responses N(0) and the 2n azimuthal component N(2n) and
the phase 2nθ (2n) which appear in (7). The radial component
of the vector field, i.e. the right hand side of (8), is presented
on the second row of Fig. 10 on the left. The colorscale is pre-
sented just below the frame, and the colormap is chosen sym-
metric with respect to the value of zero, where it is white. The
locus of this zero is presented also with a black contour. From
this frame we conclude that points starting from the origin or
at infinity move towards the black contour. The component of
the vector field in the direction χ can be calculated as the right
hand side of (10). One observes from the top row of Fig. 10 that
the product N(2n)(A,χ,nθ0)cos(2nθ (2n)) appearing on the right
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FIGURE 10: vertical cut through the poles of the Poincaré sphere of Fig. 2. The key functions governing the dynamics are presented
in the top three frames and the resulting flow fields in the radial and azimuthal direction are presented in the bottom frames, left and
middle. Black contour lines are the zeros of the fields. The bottom right plot combines the two flow fields in streamlines. In this last
frame fixed points are reported with round markers, filled if they are attractors in the plane and empty if they are repellors or saddles in
the plane. The radial coordinate is A/A and covers a range from 0 to 2 as in the other Figs. of the paper.

hand side of (10) is negative, so that the first term in (10) pushes
the solution to the poles. The second term, proportional to the
noise σ2, pushes instead the system away from the poles [23]
and it is larger at small amplitudes. The total effect is the sum
of these two counteracting terms and is presented in the middle
of the second row of Fig. 10. In the vicinity of the equator the
system state is pushed towards the equator at low amplitudes and
towards the poles at large amplitudes. The color of the frame
can be interpreted here qualitatively as follows: blue pushes the
state south and red pushes the state north. The location of where
χ ′ = 0 is presented also in this frame with black contour lines.
The intersections of the contour lines of the first two frames in
the second row of Fig. 10 describe the fixed points in this verti-
cal plane. These are presented in the last frame of Fig. 10 with
two circles. The filled circles are attractors in the plane, while

empty circles are repellors or saddles. In the same frame also the
streamlines of the in-plane flow is presented, colored by its mag-
nitude. As a summary, Fig. 10 shows that the standing solution
on the equator is a repellor and that two mixed states close to the
equator are attractors in this vertical plane. There are no corre-
sponding peaks in the PDF of the nature angle in Fig. 9. This is
attributed to the noise and to how close the three fixed points are.

We analyze next the horizontal equatorial cut, presented in
Fig. 11. To this figure the same interpretation of Fig. 10 ap-
plies, in terms of colors, black contour lines marking the loci
of the zeros and circles marking the fixed points. We observe
that the phase 2nθ (2n) is very close to π but not exactly match-
ing π on this plane. This means that sin(2nθ (2n)) is not exactly
zero, and then the term 1

4 N(2n)(A,χ = 0,nθ0)sin(2nθ (2n)) that
appears in the i-imaginary component of (7) drives the system in
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FIGURE 11: Horizontal cut through the equator of the Poincaré sphere. Same information of Fig. 10 applies.

the nθ direction. This translates in alternating signs of the az-
imuthal field in the middle frame of the second row of Fig. 11.
The color of the frame can be interpreted here qualitatively as
follows: blue pushes the state clockwise in the horizontal plane
and red pushes the state anticlockwise. Notice however that the
magnitude of the color scale in this frame is much smaller than
the color scale describing the field in the radial direction (bot-
tom left frame of the same Figure). This is also apparent when
looking at the streamlines in the last frame on the second row of
Fig. 11. The slight turn of the streamlines in the azimuthal di-
rection is barely visible only close to the fixed points. In this last
frame, the fixed points alternate between attractors and saddles.
There are no corresponding peaks in the PDF of the orientation
angle nθ0 in Fig. 9. This is attributed both to the noise and to the
weakness of the field in this direction.

We conclude this section with a discussion of the role that
the four parameters Θ = {α,β ,σ ,κ} have on the system dynam-
ics and on the phase space, based on (8) and (10). First of all, the
instantaneous growth rate of the system goes from (β −α)M/2

in the linear regime to −Mα/2 at very large amplitudes. These
two numbers determine how fast can the amplitude vary in one
limit-cycle, with small values leading to slow variations6. Small
values of the nonlinear saturation constant κ lead to larger am-
plitudes because κ describes how gentle is the saturation of the
flames as function of amplitude, with small values of κ leading
to a flame that saturates only at very large amplitudes. In Figs. 10
and 11, larger amplitudes for the system mean that the fixed
points are pushed away from the origin. Based on numerical ev-
idence, a change of the amplitude does not affect the topology of
the phase space on the horizontal of Fig. 11. Regarding instead
the topology of the phase space in the vertical plane of Fig. 10,
this depends on the analysis presented after (10). We have ob-
served that, depending on the flame response and on the nondi-
mensional number σ/(A

√
ω0), the three fixed points presented

can coalesce to one attractor. Focusing just on the effect of the
noise intensity in this vertical plane, we observe that it pushes the

6at amplitudes sufficiently large so that the contribution of the noise is small
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system away from the poles by means of the term − σ2

4A2 tan(2χ)
in (10) [23]. The strength of this effect in the neighbourhood of
the mean amplitude A = E[A] scales like the square of σ/A. This
depends then indirectly on A, which in turn depends on the non-
linear response of the flame and is only loosely dependent on the
linear behaviour of the system.

CONCLUSIONS
We have presented statistical results using engine measure-

ments characterising one azimuthal instability of azimuthal order
n at angular frequency ω0. We have characterized the acoustic
field in terms of the amplitude of the acoustic pulsation A, of the
orientation angle nθ0 where the pulsation amplitude is maximum
and of the nature angle 2χ describing if the acoustic field rotates
or stands. A protection scheme making use of just one pulsation
sensor to protect against pulsation is discussed. The scheme ac-
counts for the non-homogeneity of the pulsation amplitude in the
azimuthal coordinate.

The governing equations are then presented and a theoretical
discussion of the fixed points of the system is carried out, recov-
ering existing theories for the stability of spinning and standing
solutions in the homogeneous case. In particular, it is shown that,
together with the level of acoustic damping α and of the back-
ground noise σ , only the sum of the flame responses and their 2n
azimuthal component affect the dynamics of the acoustic field.
An existing theoretical criterion for the stability of standing so-
lutions at low level of noise σ is also proved to apply to annular
combustors where the flame response depends also on the az-
imuthal acoustic velocity and where the response of the flames is
different from flame to flame.

A new methodology is proposed to tune the parameters of
a thermoacoustic model as the parameters maximizing the like-
lihood of the data of the model, which is recast as probabilistic.
This is explored on a simplified model where all the flames in the
combustor are the same, respond to the level of acoustic pressure
at the burner, and are characterized by a linear equivalent flame
strength β and a nonlinear saturation κ . This methodology is first
validated on simulation data and then applied on engine data, al-
lowing the identification of the model parameters. A comparison
between a simulation of the identified system and the engine data
is presented with good agreement. Finally the phase space of the
identified system is characterized on the Poincaré sphere.
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APPENDIX

This appendix shows how (7) is derived from (4). We ma-
nipulate the second line of (4), reported here for convenience:

1
2

1
2π

∫ 2π

0

(
ei2n(θ−θ0)ekχ + e−kχ

)
Qθ (Ap(θ))dθ ekχ (19)
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We substitute (6) into (5):

Qθ (Ap) = 2π

M−1

∑
m=0

Qm(Ap(θ))δ (θ −θm)−Mα (20)

We then substitute (20) into (19):

1
2

M−1

∑
m=0

(
ei2n(θm−θ0)ekχ + e−kχ

)
Qm(Ap(θm))ekχ

− 1
2

1
2π

∫ 2π

0

{(
ei2n(θ−θ0)ekχ + e−kχ

)
Mαekχ

}
dθ (21)

Because the describing functions Qm and α are real-valued, (21)
simplifies to:

1
2

[
M−1

∑
m=0

ei2n(θm−θ0)Qm(Ap(θm))

]
e2kχ +

1
2

M−1

∑
m=0

Qm(Ap(θm))

− 1
2

1
2π

∫ 2π

0

(
ei2n(θ−θ0)ekχ + e−kχ

)
ekχ dθ Mα (22)

The term on the second line of (22) simplifies:

−1
2

1
2π

∫ 2π

0
ei2n(θ−θ0)dθ e2kχ Mα− 1

2
1

2π

∫ 2π

0
dθ Mα =−1

2
Mα

which substituted into (22) gives

1
2

{[
M−1

∑
m=0

ei2n(θm−θ0)Qm(Ap(θm))

]
e2kχ +

M−1

∑
m=0

Qm(Ap(θm))−Mα

}
(23)

We then write the scalars Qm, m = 0, . . . ,M−1 in terms of their
discrete Fourier transform:

Qm(Ap(θm)) =
1
M

M/2

∑
r=0

N(r) cos
[
r(θm−θ

(r)−θ0)
]

(24)

where the Fourier transform coefficients and phases
{(N(r),θ (r)), r = 0, . . . ,M/2} depend on (A,χ,nθ0) and
can be calculated as:

N(r) ≡ (2−δr,0−δr,Nb/2)
M−1

∑
m=0

cos
[
r(θm−θ

(r)−θ0)
]

Qm(Ap(θm))

(25)

where δa,b is the Kronecker delta and θ (r) is such that

M−1

∑
m=0

sin
[
r(θm−θ

(r)−θ0)
]

Qm(Ap(θm)) = 0 (26)

We substitute (24) into the second summation of (23) and sim-
plify:

1
M

M/2

∑
r=0

N(r)
M−1

∑
m=0

cos
[
r(θm−θ

(r)−θ0)
]
= N(0) (27)

We substitute (24) also in the term between square brackets in
(23) that simplifies to:

M−1

∑
m=0

ei2n(θm−θ0)Qm(Ap(θm)) =

=
1
M

M/2

∑
r=0

N(r)
M−1

∑
m=0

ei2n(θm−θ0) cos
[
r(θm−θ

(r)−θ0)
]

=
M/2

∑
r=0

N(r)ei2nθ (r)

{
1
M

M−1

∑
m=0

ei2n(θm−θ (r)−θ0) cos
[
r(θm−θ

(r)−θ0)
]}

=
1
2

N(2n)ei2nθ (2n)
(28)

where it is assumed that the azimuthal order n is smaller or equal
to M/4. Substituting (27) and (28) into (23) we obtain:

1
2

{
N(0)−Mα +

1
2

N(2n)ei2nθ (2n)
e2kχ

}
(29)

which is the second line of (7). We finally observe that for real-
valued describing functions it holds that ω ≈ ω0, one obtains
(7). We observe from the definition (25) that N(0) depends on
{A,χ,nθ0} and that N(2n) depends on {A,χ,2n(θ (n)−θ0)}.
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